独立性视角下的相频融合领域泛化方法  

Domain generalization method of phase-frequency fusion from independent perspective

在线阅读下载全文

作  者:肖斌[1,2] 杨模 汪敏 秦光源[1] 李欢 XIAO Bin;YANG Mo;WANG Min;QIN Guangyuan;LI Huan(School of Computer Science and Software Engineering,Southwest Petroleum University,Chengdu Sichuan 610500,China;Big Data and Knowledge Engineering Research Center,Southwest Petroleum University,Chengdu Sichuan 610500,China;School of Electrical Engineering and Information,Southwest Petroleum University,Chengdu Sichuan 610500,China;Communication and Information Technology Center,Southwest Oil&Gas Field Company,Chengdu Sichuan 610501,China)

机构地区:[1]西南石油大学计算机与软件学院,成都610500 [2]西南石油大学大数据与知识工程研究中心,成都610500 [3]西南石油大学电气信息学院,成都610500 [4]西南油气田公司通信与信息技术中心,成都610501

出  处:《计算机应用》2024年第4期1002-1008,共7页journal of Computer Applications

基  金:国家自然科学基金资助项目(62006200);四川省科技计划项目(2022YFG0179);油气藏地质及开发工程国家重点实验室(成都理工大学)项目(PLC20211104)。

摘  要:针对现有的领域泛化(DG)方法对领域特征处理粗糙和泛化能力弱的问题,提出一种基于频域特征独立性这一独特视角解决领域泛化问题的方法。首先,设计频域分解算法,将图像的深度特征快速傅里叶变换(FFT)后,再从相位信息中获得领域无关特征,以提高模型对领域无关特征的识别能力;其次,基于独立性视角,通过对样本的特征赋权,进一步消除频域特征中各属性的相关性,提取最有效领域无关特征,解决样本特征之间相关性带来的泛化能力差的问题;最后,提出幅度融合策略,拉近源域和目标域的距离,进一步提升模型对未知领域的泛化能力。在流行的图像领域泛化的数据集PACS和VLCS上的实验结果表明,所提方法的准确率均值比StableNet分别高0.44、0.59个百分点,且在各个数据集上均取得了优秀的性能。The existing Domain Generalization(DG)methods process the domain features poorly and have weak generalization ability,thus a method based on the feature independence of the frequency domain was proposed to solve the domain generalization problem.Firstly,a frequency domain decomposition algorithm was designed to obtain domainindependent features from phase information by the Fast Fourier Transform(FFT)of depth features of the image,improving the recognition ability of domain-independent features.Secondly,from the independence perspective,the correlation of attributes in frequency domain features was further eliminated by weighting the features of samples,and the most effective domain-independent features were extracted to solve the poor generalization problem caused by correlation between sample features.Finally,the amplitude fusion strategy was proposed to narrow the distance between the source domain and the target domain,so as to further improve the generalization ability of the model to the unknown domain.Experimental results on popular image domain generalization datasets PACS and VLCS show that the average accuracy of the proposed method is 0.44,0.59 percentage points higher than that of StableNet,and the proposed method achieves excellent performance on all datasets.

关 键 词:领域泛化 图像分类 深度神经网络 独立性学习 相频融合 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象