面向动态交通流多步预测的时空图模型  

Spatio-temporal graph model for multi-step forecasting of dynamic traffic flow

在线阅读下载全文

作  者:杨平 李成鑫[1] 刘宜成[1] 吕淳朴 YANG Ping;LI Cheng-xin;LIU Yi-cheng;LYU Chun-pu(College of Electrical Engineering,Sichuan University,Chengdu 610065,China;Department of Automation,Tsinghua University,Beijing 100084,China)

机构地区:[1]四川大学电气工程学院,四川成都610065 [2]清华大学自动化系,北京100084

出  处:《计算机工程与设计》2024年第4期1195-1201,共7页Computer Engineering and Design

基  金:四川大学-泸州战略合作基金项目(2020CDLZ-4)。

摘  要:为更好表征交通路网中节点之间的动态隐式关系,提出一种基于时空数据嵌入的动态图卷积交通流预测模型。基于路网中节点之间的共现关系,利用深度游走算法将时空数据映射到嵌入空间中学习节点的向量表示;引入时隙嵌入特征与二维空间嵌入特征共同构建三维嵌入邻接张量,用于捕获时空依赖关系;在图卷积网络中添加自适应更新机制,利用循环组件演化图卷积网络的参数,以捕获图序列的动态性。将所提模型应用于基于真实交通数据集的交通流预测,结果验证了其有效性和提取路网隐式关系的准确性。To characterize dynamic implicit relationship between nodes in traffic network,a traffic flow forecasting model was proposed based on the dynamic graph convolution network considering the spatio-temporal data embedding.In view of the co-occurrence relationship between nodes in the road network,a method of the vector representation assisted by the deepwalk algorithm was designed that could map spatio-temporal data into embedding space.The time slot embedded feature and the two-dimensional spatial feature were introduced to jointly construct the three-dimensional embedding adjacency tensor for capturing the spatio-temporal dependencies.An adaptive updating mechanism was added to the graph convolution network,which used RNN components to evolve the parameters of the graph convolution network to catch the dynamic characteristic of the graph sequence.The model was applied to traffic flow forecasting based on real traffic data set,and the results verified the effectiveness of the proposed model and the accuracy of it in extracting the implicit relationship of the road network.

关 键 词:交通流预测 时空数据嵌入 深度游走算法 节点向量表示 时空依赖 动态图卷积 自适应更新机制 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象