检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:崔更申 邱德宪 匡兵[2] 黄春德 CUI Geng-shen;QIU De-xian;KUANG Bing;HUANG Chun-de(School of Computer Science and Information Security,Guilin University of Electronic Technology,Guilin 541004,China;School of Mechanical and Electrical Engineering,Guilin University of Electronic Technology,Guilin 541004,China)
机构地区:[1]桂林电子科技大学计算机与信息安全学院,广西桂林541004 [2]桂林电子科技大学机电工程学院,广西桂林541004
出 处:《激光与红外》2024年第3期380-388,共9页Laser & Infrared
摘 要:针对现有激光雷达特征匹配算法线段特征匹配定位不够准确的问题,提出了一种基于卡尔曼融合的激光雷达特征匹配算法。首先扫描一帧雷达数据,利用改进的激光雷达线段特征提取方法,提取出特征线段,得到局部地图。接着确定局部地图旋转、平移参数,再将局部与全局地图进行匹配,根据相对偏差得到匹配结果。然后基于卡尔曼,利用IMU数据作下一时刻的预测估计,利用激光雷达匹配结果作观测,两者融合得到最优估计。实验结果表明该方法相对现有特征匹配算法在特征线段的匹配准确性上更高,因此定位导航的精度和鲁棒性也更好。In this paper,a feature matching method for LiDAR based on Kalman fusion is proposed to address the problem of inaccurate localization using line segment features in existing LiDAR feature matching algorithms.Firstly,a frame of LiDAR data is scanned,and local map is generated by using an improved method for extracting line segment features.The rotation and translation parameters of the partial map are then determined,and the partial map is matched with the global map to obtain the matching result according to the relative deviation.Then,based on the Kalman filter,the IMU data is used to predict the estimation for the next moment,and the LiDAR matching result is used as the observation.Finally,the two results are fused to obtain the optimal estimation.The experimental results show that this method is more accurate in matching line segment features compared to the existing feature matching algorithms,which leads to better precision and robustness in localization and navigation.
分 类 号:TP24[自动化与计算机技术—检测技术与自动化装置] TN958.98[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31