检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李伟玥 朱志国[1,2] 董昊 姜盼 高明[1,2] LI Weiyue;ZHU Zhiguo;DONG Hao;JIANG Pan;GAO Ming(School of Management Science and Engineering,Dongbei Uni-versity of Finance and Economics,Dalian 116025;Key Laboratory of Liaoning Province for Data Analytics and Decision-Marking Optimization,Dongbei University of Finance and Economics,Dalian 116025)
机构地区:[1]东北财经大学管理科学与工程学院,大连116025 [2]东北财经大学辽宁省大数据管理与优化决策重点实验室,大连116025
出 处:《模式识别与人工智能》2024年第3期191-206,共16页Pattern Recognition and Artificial Intelligence
基 金:国家自然科学基金面上项目(No.72172025,72101051,71802023);教育部人文社科规划基金项目(No.21YJAZH130);辽宁省教育厅基本科研项目(No.LJKMZ20221606)资助。
摘 要:现有大部分基于图神经网络的会话推荐系统都可较好捕捉商品在会话图中的近邻上下文关系,但少有重点关注时序关系的系统.然而,这两种关系都对电商场景下的精准推荐具有重要作用.为此,文中基于双向长短期记忆网络和门控图神经网络,提出循环神经网络和注意力增强的门控图神经网络会话推荐模型,旨在实现不同网络结构的优势互补,充分学习用户在当前会话中表现的兴趣偏好.具体地,文中模型采用并行化框架结构,分别学习电商场景下用户会话点击流中商品间的近邻上下文特征和时序关系,再分别使用注意力机制进行去噪处理,最后基于门控机制实现这两种特征间的自适应融合.在3个真实数据集上的实验表明文中模型的性能较优.文中模型代码见https://github.com/usernameAI/RAGGNN.Most of existing session-based recommender systems with graph neural networks are capable of capturing the adjacent contextual relation of products effectively in the session graph.However,few of them focus on the sequential relation.Both relations are important for precise recommendations in e-commerce scenarios.To solve the problem,a recurrent neural network and attention enhanced gated graph neural network for session-based recommender system is proposed based on bidirectional long short-term memory.The model is designed to complement the advantages of different network structures and learn the user′s interest preferences expressed during the current session more fully.Specifically,a parallel framework is adopted in the proposed model to learn the neighborhood contextual features and temporal relation among products respectively within user session clickstreams in e-commerce scenarios.Attention mechanisms are applied to denoise the features.Finally,the adaptive fusion method of both features is employed based on gating mechanism.Experiments on three real-world datasets show the superiority of the proposed model.The model code in the paper is available at https://github.com/user nameAI/RAGGNN.
关 键 词:会话推荐系统 图神经网络 循环神经网络 注意力机制
分 类 号:TP391.3[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.49.6