检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:苏德尔 李浩宇[1] 高伟达[2] 王宇航 郭长亮 赵唯淞 Su Deer;Li Haoyu;Gao Weida;Wang Yuhang;Guo Changliang;Zhao Weisong(Innovation Photonics and Imaging Center,School of Instrumentation Science and Engineering,Harbin Institute of Technology,Harbin 150080,Heilongjiang,China;Department of Neurosurgery,The Second Affiliated Hospital of Harbin Medical University,Harbin 150086,Helongjiang,China;College of Mechanical and Electrical Engineering,Northeast Forestry University,Harbin 150040,Heilongjiang,China;Beijing Institute of Collaborative Innovation,Beijing 100094,China;State Key Laboratory of Membrane Biology,Beijing Key Laboratory of Cardiometabolic Molecular Medicine,Institute of Molecular Medicine,National Biomedical Imaging Center,College of Future Technology,Peking University,Beijing 100871,China)
机构地区:[1]哈尔滨工业大学仪器科学与工程学院先进光电成像技术研究室,黑龙江哈尔滨150080 [2]哈尔滨医科大学附属第二医院神经外科室,黑龙江哈尔滨150086 [3]东北林业大学机电工程学院,黑龙江哈尔滨150040 [4]北京协同创新研究院,北京100094 [5]北京大学未来技术学院国家生物医学成像科学中心分子医学研究所膜生物学国家重点实验室,代谢及心血管分子医学北京市重点实验室,北京100871
出 处:《激光与光电子学进展》2024年第2期205-211,共7页Laser & Optoelectronics Progress
基 金:国家自然科学基金(62305083,T2222009,32227802);中国博士后科学基金(2023T160163,2022M720971);黑龙江省博士后科学基金(LBH-Z22027);中国国家重点研发计划(2022YFC3400600);黑龙江省自然科学基金(YQ2021F013)。
摘 要:管道机器人是对复杂系统中管道损伤进行检测和评估的主要工具之一,通过沿行进方向搭载成像系统,实现了在管道中的运动导航和内环境观察。然而,这会导致管壁信息存在于图像传感器边缘,不可避免地会受到镜头畸变的影响而降低对损伤的检测精度,提高对损伤的定量难度。而搭载额外的成像系统观察管壁会大大增加机器人的承载负荷和整体体积,尤其在小尺寸管道机器人中。设计一款适用于管道机器人的微型化管壁成像系统。经过元件选型、光学系统优化和3D打印集成后,整个系统的体积为25 mm×30 mm×12 mm,最优横向分辨率为15.63μm。最后利用该系统制作了一款微型管道机器人,验证了其成像效果和定量能力。此系统有望搭载到其他管道机器人上作为扩展载荷,提升对管壁细节信息的捕捉能力。Pipeline robots are vital tools for detecting and assessing pipeline damage in complex systems.Incorporating imaging systems into their forward trajectory enables these robots to navigate and observe the internal environment of pipelines.However,this positioning often results in pipeline walls information appearing at the edges of the image sensor,where lens distortions substantially impact the image quality.This distortion reduces the precision of damage detection and complicates the quantification of damage.Additionally,integrating additional imaging systems to observe the walls would substantially increase the robot's payload and volume,which is a critical issue for small-scale pipeline robots.To address these challenges,we developed a miniaturized wall imaging system specifically for pipeline robots.Our approach involves careful component selection,optimization of the optical system,and integration using 3D printing,resulting in a compact system measuring 25 mm×30 mm×12 mm and offering an optimal lateral resolution of 15.63μm.Furthermore,we constructed a miniaturized pipeline robot using this system,demonstrating its effectiveness in imaging and quantification.This innovative system can be integrated into various pipeline robots,thereby enhancing their capabilities in capturing detailed information about pipeline walls.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.19.76.4