检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:汪佳铭 胡明茂 师国东 朱天民 WANG Jiaming;HU Mingmao;SHI Guodong;ZHU Tianmin(School of Mechanical Engineering,Hubei Institute of Automotive Technology,Shiyan 442000,China)
机构地区:[1]湖北汽车工业学院机械工程学院,湖北十堰442000
出 处:《滨州学院学报》2024年第2期81-89,共9页Journal of Binzhou University
基 金:湖北省重点研发计划项目(2020BAA005);工信部工业互联网创新发展工程项目(TC200A00W,TC200802C)。
摘 要:为解决重型自卸车的侧翻预警问题,基于CNN-LSTM神经网络构造了重型自卸车的侧翻预警模型。利用Trucksim与MATLAB/Simulink搭建了重型自卸车仿真模型,以横向载荷转移率等于±0.85为侧翻阈值,提取了不同工况下的车辆运行参数,利用车辆运行参数,训练CNN-LSTM重型自卸车侧翻预警模型,并分别与基于CNN、LSTM搭建的预警模型对比。结果表明:CNN-LSTM重型自卸车侧翻预警模型预测准确率为98.31%;感受性曲线的曲线下面积为0.999,高于由单一神经网络所搭建的侧翻预警模型。In order to solve the rollover warning problem of heavy dump truck,based on the CNN-LSTM neural network,a rollover early warning model for heavy-duty dump trucks is constructed to achieve real-time determination under different working conditions.Using Trucksim and MATLAB/Simulink joint simulation,a heavy dump truck simulation model is built.With the lateral load transfer rate equal to±0.85 as the rollover threshold,the vehicle operating parameters under different working conditions are extracted and the vehicle operating parameters are used.The CNN-LSTM heavy-duty dump truck rollover early warning model is trained and compared with the early warning models based on CNN and LSTM respectively.The results show that the prediction accuracy of CNN-LSTM heavy dump truck rollover warning model is 98.31%,and the area under ROC curve is 0.999,which is higher than the rollover warning model built by a single neural network.It is clear that the CNN-LSTM heavy dump truck rollover warning model has some advance warning significance and is useful for reducing the occurrence of heavy dump truck rollover accidents.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38