检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林燕翔 沈印 李光林[1] Lin Yanxiang;Shen Yin;Li Guanglin(College of Engineering and Technology,Southwest University,Chongqing,400715,China;College of Medical Information,Chongqing Medical University,Chongqing,400016,China)
机构地区:[1]西南大学工程技术学院,重庆市400715 [2]重庆医科大学医学信息学院,重庆市400016
出 处:《中国农机化学报》2024年第4期108-116,共9页Journal of Chinese Agricultural Mechanization
基 金:重庆市技术创新与应用发展专项重点项目(cstc2019jscx-gksbX0001)。
摘 要:为解决传统人工识别小麦效率低、主观性高的问题,提出一种基于改进的CBAM-InceptionV3小麦杂质识别方法。搭建机器视觉在线检测平台采集动态图像数据,采用数据集增强、图像预处理和KS分类方法对小麦杂质图像进行处理;选用GoogLeNet、ResNet34、InceptionV3三种模型对图像数据集进行分类训练。以InceptionV3模型为基础,引入注意力机制CBAM,增强模型对信息的敏感度,提升模型的识别准确率。将改进卷积神经网络CBAM-InceptionV3模型与加入CA模块的CA-InceptionV3、InceptionV3两种模型进行对比试验。结果表明,InceptionV3模型在测试集上准确率为83.5%、F_(1)-Score为82.41%,CA-InceptionV3模型在测试集上准确率为92.3%、F_(1)-Score值为92.29%,CBAM-InceptionV3在测试集上准确率为92.9%、F_(1)-Score值为92.92%。CBAM-InceptionV3模型对测试集的平均预测时间为0.045张/s,明显优于其他两种模型。In order to solve the problem of low efficiency and high subjectivity of traditional wheat identification,an improved CBAM-InceptionV3 wheat impurity identification method was proposed.Firstly,a machine vision online detection platform was built to collect dynamic image data,and the wheat impurity image was processed by data set enhancement,image preprocessing and KS classification.Then,GoogLeNet,ResNet34 and InceptionV3 models were used to classify and train the image data set.Secondly,based on InceptionV3 model,CBAM was introduced to enhance the sensitivity of the model to information and improve the recognition accuracy of the model.The improved convolutional neural network CBAM-InceptionV3 model is compared with CA-InceptionV3 and InceptionV3 models added in CA module.The results show that the accuracy of InceptionV3 model on test set is 83.5%and F_(1)-Score is 82.41%,and the accuracy of CA-InceptionV3 model on test set is 92.3%and F_(1)-Score is 92.29%.CBAM-InceptionV3 has 92.9%accuracy and 92.92%F_(1)-Score on the test set.The average prediction time of CBAM-InceptionV3 model for the test set is 0.045 pieces/s,which is significantly better than the other two models.
关 键 词:小麦杂质 卷积神经网络 分类识别 CBAM-InceptionV3 可视化
分 类 号:S126[农业科学—农业基础科学] S512[自动化与计算机技术—计算机应用技术] TP391[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15