检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王洋[1] 郭杜杜[2] 王庆庆 周飞 秦音 Wang Yang;Guo Dudu;Wang Qingqing;Zhou Fei;Qin Ying(School of Intelligent Manufacturing Modern Industry,Xinjiang University,Urumqi 830017,Xinjiang,China;School of Traffic and Transportation Engineering,Xinjiang University,Urumqi 830017,Xinjiang,China)
机构地区:[1]新疆大学智能制造现代产业学院,新疆乌鲁木齐830017 [2]新疆大学交通运输工程学院,新疆乌鲁木齐830017
出 处:《激光与光电子学进展》2024年第4期230-238,共9页Laser & Optoelectronics Progress
基 金:新疆维吾尔自治区重点研发计划(2022B01015-3)。
摘 要:针对现有语义分割方法检测高速公路护栏时存在预测速度慢、分割精度低的问题,提出一种基于改进DeepLabV3+的无人机高速公路护栏检测方法。首先,采用MobileNetv2网络替换原模型的主干并输出中层特征,减少参数量的同时恢复降采样过程中丢失的空间信息;然后,采用密集连接扩张卷积改进空洞空间金字塔池化,以减少漏分割现象;最后,在编码器部分引入空间分组增强(SGE)注意力机制,减少错分割现象。实验结果表明,改进后模型平均交并比、平均像素准确率、画面每秒传输帧数达到了79.20%、87.89%、52.59,相比基础模型,分别提高了2.59%、2.93%、56.70%,参数量降低了78.85%,能够在保障模型预测速度的同时提高对护栏的分割精度。To address the problems of slow prediction speed and low segmentation accuracy of existing semantic segmentation methods for highway guardrail detection,an UAV highway guardrail detection method based on improved DeepLabV3+is proposed.First,the MobileNetv2 network was used to replace the backbone of the original model and outputs the middle layer’s features to reduce number of parameters while recovering the spatial information lost in the downsampling process;then an atrous spatial pyramid pooling was improved by the densely connected expansive convolution to reduce the phenomenon of missed segmentation;finally,the spatial group-wise enhance(SGE)attention mechanism was introduced in the encoder part to reduce the phenomenon of wrong segmentation.The experimental results show that the average intersection over union,average pixel accuracy,and frames per second transmission of the improved model can reach 79.20%,87.89%,and 52.59,which are 2.59%,2.93%,and 56.70%higher than the base model,respectively,and number of parameters is reduced by 78.85%.This method can thus improve the segmentation accuracy for the guardrail while guaranteeing the model’s prediction speed.
关 键 词:图像处理 语义分割 无人机 DeepLabV3+ 注意力机制
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.206.240