一种基于激光雷达探测新型安全可靠高铁站台门控系统  

A novel safety and reliable platform door control system based on LiDAR detection for high-speed railway

在线阅读下载全文

作  者:王浩东 王志飞 李樊 魏耀楠 WANG Haodong;WANG Zhifei;LI Fan;WEI Yaonan(China Academy of Railway Sciences,Beijing 100081,China;Institute of Computing Technology,China Academy of Railway Sciences,Beijing 100081,China)

机构地区:[1]中国铁道科学研究院,北京100081 [2]中国铁道科学研究院集团有限公司电子计算技术研究所,北京100081

出  处:《激光杂志》2024年第3期230-236,共7页Laser Journal

基  金:国家重点研发计划项目(No.2020YFF0304100);铁科院院基金项目(No.2351DZC901)。

摘  要:针对铁路动车组无列车自动驾驶(ATO)且在同一站台不同车型混合运营,现有的站台门控制系统无法识别多种车型车门位置的难题,提出基于激光雷达技术的铁路站台门控制系统。首先分析铁路多车型环境下车门位置排布信息,再利用激光雷达采集相对应的位置信息和动车组停稳信息,设计激光雷达位置跟踪控制单元,然后对站台门控制系统进行设计,最终通过实验验证。实验结果表明,该系统安全、可靠,不仅能准确识别不同动车组的车门位置且能判别动车组停稳,准确率超过98.4%,为其后铁路站台门的推广、应用提供理论和应用基础。In response to the issue,the existing platform door control systems cannot identify multiple train door locations,particularly for railway train sets without Automatic Train Operation(ATO).Different train models operate mixedly at the same platform,so this paper proposes a railway platform door control system based on LiDAR technology.Firstly,the arrangement information of door locations in a multi-model railway environment is analyzed.Subsequently,the train sets'corresponding position information and the stable stopping information are collected using Li-DAR technology,followed by the design of a LiDAR position tracking control unit.The platform door control system is then designed and eventually verified through experiments.The experimental results demonstrate that the system is safe and reliable.It can accurately identify the door positions of different high-speed train units and determine when the train comes to a complete stop.Its accuracy exceeds 98.4%,providing both theoretical and practical foundations for the promotion and application of platform doors in subsequent railway stations.

关 键 词:激光雷达 站台门 控制系统 实验验证 

分 类 号:TN249[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象