检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐心亮 赵冰雪 韩明[2] 宿景芳[1] Tang Xinliang;Zhao Bingxue;Han Ming;Su Jingfang(College of Information Science and Engineering,Hebei University of Science and Technology,Shijiazhuang 050018,China;College of Future Information Technology,Shijiazhuang University,Shijiazhuang 050035,China)
机构地区:[1]河北科技大学信息科学与工程学院,石家庄050018 [2]石家庄学院未来信息技术学院,石家庄050035
出 处:《国外电子测量技术》2024年第3期43-49,共7页Foreign Electronic Measurement Technology
基 金:石家庄市科技计划项目(221130321A)资助。
摘 要:针对已有的分割算法存在的复杂场景干扰大、分割不准确的问题,提出一种用于电力线分割任务的改进Deeplabv3+模型。将原始主干网络替换为轻量级Mobilenetv2网络,增加低水平特征,获得5路输入特征,充分提取特征信息;添加空洞空间金字塔池化(atrous spatial pyramid pooling,ASPP)的卷积分支数量,调整空洞率,提升图像的特征抓取能力,进一步在每个空洞卷积后加入1×1卷积操作,加快计算速度;提出一种基于坐标注意力机制的语义嵌入分支模块(coordinate attention semantic embedding branch,CASEB),融合第2、3路特征,增强目标特征的表示;引入卷积注意力机制模块(convolution block attention module,CBAM)抑制无用信息的传递,提高模型识别效率。实验结果表明,相对于原Deeplabv3+模型,改进模型在平均像素精度(mean pixel attention,MPA)和平均交并比(mean intersection over union,mIoU)上分别提升2.37%和3.42%,该方法可提供更加精确的电力线分割结果。In order to solve the problems of complex scene interference,inaccurate segmentation and slow prediction,an improved Deeplabv3+model for power line segmentation is proposed.Replace the original backbone network with lightweight Mobilenetv2 network,add low-level features,obtain five-way input features,and fully extract feature information.The number of convolution in the atrous spatial pyramid pooling(ASPP)is increased,and the voidness rate was adjusted to improve the feature capturing ability of the image.Furthermore,1×1 convolution operation was added after each void convolution to speed up the calculation.A coordinate attention semantic embedding branch(CASEB)based on coordinate attention mechanism is proposed,which integrates the second and third features to enhance the representation of target features.CBAM attention module is introduced to inhibit the transmission of useless information and improve the efficiency of model recognition.Compared with the original Deeplabv3+model,the mean pixel attention(MPA)and mean intersection over union(mIoU)of the improved model are improved by 2.37%and 3.42%respectively.This method can provide more accurate results of power line segmentation.
关 键 词:电力线分割 深度学习 改进Deeplabv3+模型 Mobilenetv2 注意力模块
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7