检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:靳放 郑素佩[1] 封建湖[1] 林云云 JIN Fang;ZHENG Su-pei;FENG Jian-hu;LIN Yun-yun(College of Science,Chang’an University,Xi’an 710064,China)
机构地区:[1]长安大学理学院,西安710064
出 处:《计算力学学报》2024年第2期352-358,共7页Chinese Journal of Computational Mechanics
基 金:国家自然科学基金(11971075,11901057)资助项目.
摘 要:双曲守恒律方程是一类比较特殊的偏微分方程,其数值求解方法的研究一直是一个热点问题,一个显著特性是即使初始条件是光滑的,其解也可能会发展成间断。浅水波方程作为非线性双曲守恒律方程,由于间断解的存在,其精确求解存在很大困难。针对浅水波方程数值求解问题,本文基于PINN(Physics informed neural networks)反问题网络结构构造新的网络,构造的网络结构包括两个并行的神经网络,其中一个网络与已知状态数据(熵稳定格式加密求出)相关,另一个网络与方程本身相关。利用已知速度数据结合浅水波方程本身求解未知水深,最终通过一些数值算例验证网络的可行性。结果表明,新的网络结构可用于浅水波方程求解,利用速度数据可以较为精确地推算出水深。Hyperbolic conservation equation is a special class of partial differential equations,and the study of its numerical solution method has always been a hot topic.One of its remarkable properties is that its solution may contain discontinuity even if the initial conditions are smooth.As a representation of the nonlinear hyperbolic conservation law,the shallow water wave equation is difficult to be solved precisely because of the existence of discontinuous solutions.In order to solve numerically the shallow water wave equation,a new network is constructed based on the inverse problem framework of PINN(Physics-informed Neural Networks).The network structure consists of two parallel neural networks,one of which is related to the known data obtained by the entropy stable schemes.The other network is related to the equation itself.The unknown water depth is determined by combining the known velocity data with the shallow water wave equation itself.Finally,the feasibility of the network is verified by some numerical examples.The results show that the new network structure can be used to solve the shallow water wave equation,and the water depth can be accurately calculated.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.42