检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:毕金茂 张朋[2] 张洁[2] 赵春财 崔利 BI Jinmao;ZHANG Peng;ZHANG Jie;ZHAO Chuncai;CUI Li(College of Mechanical Engineering,Donghua University,Shanghai 201620,China;Institute of Artificial Intelligence,Donghua University,Shanghai 201620,China;Xinfengming Group Huzhou Zhongshi Technology Co.,Ltd.,Huzhou 313000,Zhejiang,China)
机构地区:[1]东华大学机械工程学院,上海201620 [2]东华大学人工智能研究院,上海201620 [3]新凤鸣集团湖州中石科技有限公司,浙江湖州313000
出 处:《上海交通大学学报》2024年第4期534-544,共11页Journal of Shanghai Jiaotong University
基 金:国家自然科学基金资助项目(52005099);中央高校基本科研业务费专项(223202100044)。
摘 要:特性黏度是衡量聚酯熔体质量的关键指标,对其进行精准预测有利于提前发现聚酯熔体潜在的质量问题,及时调整工艺参数,减少企业损失.考虑到聚酯熔体生产过程的数据不完备性、数据时序性以及高维冗余性,提出了不完备数据下聚酯熔体的特性黏度预测方法.针对聚酯熔体极端生产环境造成的数据不完备问题,设计了以卷积神经网络判别器和注意力长短期记忆神经网络生成器为架构的缺失数据生成对抗网络(MDGAN),通过对抗生成机制实现了缺失数据的填充.针对聚酯熔体生产过程中高维冗余和时序双向因果特性,设计了基于极端梯度提升双向门控循环单元(XGBoost-BiGRU)的特性黏度预测模型,通过极端梯度提升算法进行特征筛选,获取预测模型输入变量,再利用双向门控循环单元捕捉数据的时序双向因果关系,实现特性黏度的精准预测.浙江某聚酯纤维生产企业的实际数据测试结果表明,MDGAN算法在不同缺失率数据集下的填充精度均优于KNN、RF、MICE、GAIN数据填充算法,XGBoost-BiGRU特性黏度预测方法较STL-GPR、CAGRU、BiGRU算法优势显著,结合MDGAN的特性黏度预测方法能有效解决数据不完备下的聚酯熔体特性黏度预测问题.Characteristic viscosity is a key indicator of the quality of polyester melts,whose accurate prediction can help to identify potential quality problems of polyester melts in advance,adjust the process parameters in time and reduce enterprise losses.Considering the data incompleteness,data time series and high dimensional redundancy of the polyester melt production process,a method is proposed to predict the characteristic viscosity of polyester melt under incomplete data.A missing data generative adversarial nets(MDGAN)with a convolutional neural network discriminator and an attention long short-term memory neural network generator is designed to address the data incompleteness problem caused by the extreme production environment of polyester melts,and the missing data is filled by the adversarial generation mechanism.The extreme gradient boosting-bidirectional gated recurrent unit(XGBoost-BiGRU)is designed to predict the viscosity of polyester melts based on high dimensional redundancy and temporal characteristics prediction.The actual data test results of a polyester fiber manufacturer in Zhejiang show that the filling accuracy of the MDGAN algorithm at different missing rate data sets is better than that of data filling algorithms such as KNN,RF,MICE,and GAIN.The XGBoost-BiGRU characteristic viscosity prediction method has significant advantages over STL-GPR,CAGRU,BiGRU.In combination of MDGAN characteristic viscosity prediction,the method proposed can effectively solve the problem of predicting the characteristic viscosity of polyester melts under incomplete data.
关 键 词:特性黏度预测 不完备数据 生成对抗网络 循环神经网络
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.133.122.6