检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:丁凯 赵欣悦 吕景祥 朱斌[1] DING Kai;ZHAO Xinyue;LYU Jingxiang;ZHU Bin(Institute of Smart Manufacturing Systems,Changan University,Xian 710064,China)
机构地区:[1]长安大学智能制造系统研究所,陕西西安710064
出 处:《郑州大学学报(工学版)》2024年第3期111-118,共8页Journal of Zhengzhou University(Engineering Science)
基 金:国家自然科学基金资助项目(51705030);中国博士后科学基金特别资助项目(2022T150073)。
摘 要:为解决柔性作业车间调度问题,在模拟自然界中天牛觅食行为的天牛须算法基础上,结合群智能优化理论,提出了一种基于莱维飞行、反向搜索和自适应参数调整混合策略的改进天牛群算法(LRA-BSO)。首先,建立柔性作业车间调度模型;其次,提出了基于Tent混沌映射生成初始种群的方法,以提高初始种群质量;再次,应用莱维飞行策略和反向搜索策略,并通过适应度反馈自适应调整天牛群的搜索步长以及搜索距离,以改善算法全局搜索能力,避免陷入局部极值;最后,为验证改进的天牛群算法的性能,通过6个多维度标准测试函数验证了LRA-BSO算法的寻优能力。通过FJSP的10个标准算例和1个实际案例验证了LRA-BSO算法在FJSP中的适用性。测试结果表明:改进的天牛群算法在8个标准算例中的表现均优于或持平于其他智能优化算法,表现出了较好的寻优能力;在实际案例验证中,改进后的算法相对于原始的天牛群算法,在收敛速度上提升了48%。To solve the flexible job shop scheduling problem(FJSP),a hybrid Levy flight,reverse search,and parameter adaptive adjustment strategy improved beetle swarm optimization(LRA-BSO)was proposed based on the beetle antennae search algorithm which could simulate the foraging behavior of beetles in nature and the swarm intelligence optimization theory.Firstly,a FJSP model was established.Secondly,the initial population was generated based on the Tent chaotic mapping,which would improve the quality of the initial population.Then,the Levy flight strategy and reverse search strategy were used to improve the global search ability of the LRA-BSO algorithm,and the search step size and the search distance of the beetle swarm were adjusted through fitness feedback to avoid falling into local optimum.Finally,the optimization ability of the algorithm was validated through 6 multi-dimensional standard test functions.In addition,the applicability of the LRA-BSO algorithm in FJSP was verified by 10 standard test cases and 1 practical case.The test results showed that the algorithm performed better or equal to other intelligent optimization algorithms in eight standard test cases and demonstrated good optimization ability.In the practical cases,the improved algorithm had a 48%improvement in convergence speed compared to the original beetle swarm optimization algorithm.
关 键 词:柔性作业车间调度 天牛群算法 莱维飞行策略 反向搜索策略 自适应参数调整
分 类 号:TH165[机械工程—机械制造及自动化] TH18
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62