基于预训练模型的单帧航拍图像无监督语义分割  被引量:2

Unsupervised semantic segmentation of single-frame aerial imagesbased on pretrained models

在线阅读下载全文

作  者:任月冬 游新冬 滕尚志 吕学强[1] REN Yuedong;YOU Xindong;TENG Shangzhi;L Xueqiang(Beijing Key Laboratory of Internet Culture and Digital Dissemination Research,Beijing Information Science&Technology University,Beijing 100101,China)

机构地区:[1]北京信息科技大学网络文化与数字传播北京市重点实验室,北京100101

出  处:《北京信息科技大学学报(自然科学版)》2024年第2期21-28,共8页Journal of Beijing Information Science and Technology University

基  金:国家自然科学基金项目(62202061;62171043);北京市自然科学基金项目(4232025);北京市教委科研计划科技一般项目(KM202311232002)。

摘  要:针对航拍图像语义分割成本高、通用性差和精度低等问题,提出了一种两阶段无监督语义分割网络(two-stage unsupervised semantic segmentation net, TUSSNet),针对单帧航拍图像训练进而生成最终的语义分割结果。算法分为2个阶段。首先,使用对比语言-图像预训练(contrastive language-image pretraining, CLIP)模型生成航拍图像的粗粒度语义标签,然后进行网络的预热训练。其次,在第一阶段的基础上,采用分割一切模型(segment anything model, SAM)对航拍图像进行细粒度类别预测,生成精细化类别掩码伪标签;然后迭代优化网络,得到最终语义分割结果。实验结果显示,相较于现有无监督语义分割方法,算法显著提高了航拍图像的分割精度,同时提供了准确的语义信息。To address the challenges of high cost,limited generalizability,and low accuracy in semantic segmentation of aerial images,a two-stage unsupervised semantic segmentation net(TUSSNet)was proposed to train single-frame aerial images and generate the final semantic segmentation outcomes.The algorithm was divided into two stages.Firstly,the contrastive language-image pretraining(CLIP)model was applied to generate coarse-grained semantic labels for aerial images,followed by network warm-up training.Secondly,on the basis of the first phase,the segment anything model(SAM)was leveraged to predict the fine-grained categories of aerial images and generate refined category mask pseudo-labels.Then,the network was iteratively optimized to achieve the ultimate semantic segmentation outcomes.Experimental results demonstrate a significant enhancement in segmentation accuracy compared with existing unsupervised methods for aerial images.Moreover,the algorithm offers precise semantic information.

关 键 词:预训练模型 航拍图像 语义分割 无监督算法 聚类效果估计 深度学习 

分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象