基于FNN的城市景观照明智能节能控制方法仿真  被引量:2

Simulation of Intelligent Energy Saving Control Method of Urban Landscape Lighting Based on FNN

在线阅读下载全文

作  者:石海啸 刘志锋[2] SHI Hai-xiao;LIU Zhi-feng(Jiangsu University,Zhenjiang Jiangsu 212000,China;School Of Computer Science And Communication Engineering,Jiangsu University,Zhenjiang Jiangsu 212000,China)

机构地区:[1]江苏大学,江苏镇江212000 [2]江苏大学计算机科学与通信工程学院,江苏镇江212000

出  处:《计算机仿真》2024年第4期489-493,共5页Computer Simulation

摘  要:为了降低景观照明用电能耗,提升节能效果,提出基于FNN的城市景观照明智能节能控制方法。分析城市景观照明需求,依据分析结果建立景观照明区域划分模型,利用上述模型将城市景观照明区域划分为开启区域和关闭区域,并在开关区域之间建立缓冲区域,规避城市景观照明控制时出现的延迟误差问题;采集景观照明设备运行状态数据,通过FNN网络对其实施训练学习,获取完整的设备状态数据集;基于获取的数据集通过模糊神经网络设计节能控制器,并利用以上节能控制器实现城市景观照明智能节能控制。实验结果表明,使用该方法对景观照明开展智能节能控制时,调光时长、照明时间以及用电能耗均得到了良好控制,说明其能够满足照明节能需求。In order to reduce the power consumption of landscape lighting and improve the energy-saving effect,an intelligent energy-saving control method of urban landscape lighting based on FNN was proposed.Firstly,we analyzed the demand for urban landscape lighting.On this basis,we built a model for dividing landscape lighting areas.Then,we used this model to divide the landscape lighting area into an open area and a closed area,and constructed a buffer area between the two areas,thus avoiding the delay error during the lighting control.Moreover,we collected the operation data of landscape lighting devices.After that,we trained and learned them through a FNN network,thus obtaining a complete set of status data.Based on the data set,an energy-saving controller was designed by the fuzzy neural network.Meanwhile,we used the energy-saving controller to complete the intelligent energy-saving control for urban landscape lighting.Experimental results show that this method can control the dimming time,lighting time and power consumption very well,and satisfies the the lighting energy-saving demands.

关 键 词:模糊神经网络 城市景观 智能节能控制 节能控制器 照明区域划分模型 

分 类 号:TP389[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象