基于元启发优化算法的数值型蜕变关系生成方法  

Generation method of numerical metamorphic relations based onmetaheuristic algorithm

在线阅读下载全文

作  者:王曙燕 王思维 WANG Shuyan;WANG Siwei(School of Computer Science of Technology,Xi’an University of Posts and Telecommunications,Xi’an 710121,China;Xi’an Engineering Research Center of IoT Intelligent Information Collection and Processing,Xi’an 710121,China)

机构地区:[1]西安邮电大学计算机学院,陕西西安710121 [2]西安市物联网智能信息采集与处理工程研究中心,陕西西安710121

出  处:《西安邮电大学学报》2024年第1期81-86,共6页Journal of Xi’an University of Posts and Telecommunications

基  金:陕西省教改重点攻关项目21BG038。

摘  要:针对蜕变测试难以获取蜕变关系且容易出现错误导致测试成本过高的问题,提出一种基于元启发优化算法的数值型蜕变关系生成方法。通过分析数值型蜕变关系的数学特征并组合等式与不等式关系,构成输入、输出参数矩阵。结合粒子群和模拟退火两种元启发优化搜索算法,设定合适的代价函数,将构成的参数矩阵作为搜索粒子,搜索并生成各种等式、不等式的蜕变关系。实验结果表明,与仅使用一种搜索算法相比,所提方法能够在不改变解的类型情况下跳过局部最优,节省时间开销,提高了蜕变关系生成效率。A numerical metamorphic relationship generation method based on metaheuristic optimization algorithm is proposed to address the problem of difficult to obtain metamorphic relationships and high testing costs caused by errors in metamorphic testing.By analyzing the mathematical characteristics of numerical metamorphic relationships and combining equations and inequality relationships,an input and output parameter matrix is formed.Through the combination of two metaheuristic optimization algorithms,namely the particle swarm optimization and the simulated annealing,appropriate cost functions are set,and the constructed parameter matrix is used as the search particle to search and generate metamorphic relationships of various equations and inequalities.Experiment results show that compared to using only one search algorithm,the proposed method can skip local optima without changing the type of solution,and can save the time costs and improve the efficiency of metamorphic relationship generation.

关 键 词:软件测试 蜕变测试 蜕变关系 粒子群算法 模拟退火算法 

分 类 号:TP311.5[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象