最大相关熵准则下改进扩展卡尔曼滤波的车辆状态估计  

Vehicle State Estimation with Improved Extended Kalman Filter Under Maximum Correntropy Criterion

在线阅读下载全文

作  者:祁登亮 冯静安[1] 倪向东[1] 宋宝[2] QI Dengliang;FENG Jing′an;NI Xiangdong;SONG Bao(College of Mechanical and Electrical Engineering,Shihezi University,Shihezi 832003,Xinjiang,China;School of Mechanical Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China)

机构地区:[1]石河子大学机械电气工程学院,新疆石河子832003 [2]华中科技大学机械科学与工程学院,武汉430074

出  处:《机械科学与技术》2024年第4期573-581,共9页Mechanical Science and Technology for Aerospace Engineering

基  金:国家自然科学基金项目(61663042)。

摘  要:针对传统卡尔曼滤波在非高斯环境下对车辆状态估计鲁棒性和精度差的问题,提出最大相关熵准则(MCC)下改进自适应迭代扩展卡尔曼(AIEKF)滤波算法(MC-AIEKF),建立横-纵耦合的三自由度车辆模型,利用易测得的车载传感器信息设计了包含横摆角速度、质心侧偏角、纵向车速的状态观测器。在双移线和正弦扫频输入工况下通过Simulink/CarSim仿真试验平台对提出的算法进行了验证。结果表明,在非高斯环境下,相比于扩展卡尔曼滤波(EKF)和AIEKF,MC-AIEKF算法估计精度高,鲁棒性好,在实际的车辆状态估计中MC-AIEKF具有更强的适用性。Because of the poor robustness and accuracy of the conventional Kalman filter for vehicle state estimation in the non-Gaussian environment,an improved adaptive iterative extended Kalman filtering(AIEKF)algorithm(MC-AIEKF)under the maximum correntropy criterion(MCC)is proposed.A three-degree-of-freedom lateral-longitudinal coupled vehicle model is established,and a state observer containing the yaw rate,mass-central sideslip angle and longitudinal speed of the vehicle is designed by utilizing the easily available information on onboard sensor.The proposed algorithm is verified with the Simulink/CarSim simulation platform under the conditions of double lane change and sine sweep input.The results show that the MC-AIEKF algorithm has higher estimation accuracy and better robustness than the extended Kalman filtering(EKF)and the AIEKF in the non-Gaussian environment,being more applicable for vehicle state estimation in real situations.

关 键 词:自适应迭代扩展卡尔曼滤波 车辆状态估计 最大相关熵准则 非高斯环境 

分 类 号:U461.1[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象