检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘红海 王巍[2] LIU Honghai(School of Medicine and Health Management,Tongji Medical College,Huazhong University of Science and Technology,Wuhan,Hubei,430030,China)
机构地区:[1]华中科技大学同济医学院医药卫生管理学院,湖北武汉430030 [2]华中科技大学同济医学院附属武汉中西医结合医院信息中心,湖北武汉430022
出 处:《医学与社会》2024年第4期104-109,115,共7页Medicine and Society
基 金:武汉市科技计划项目,编号为2022010801010522。
摘 要:目的:探索普通门诊分时段预约诊疗号源分配优化方式,为医院动态调整号源提供依据。方法:调取武汉市某三甲医院2019年3月份皮肤科普通门诊数据,采用离散事件模拟和预约号源容量分配情景假设进行仿真。结果:患者预约后平均等待时间为15.08分钟,64%的线上预约患者未在预约时间段之前到达,患者预约后平均等待时间仿真结果与医院真实数据仅相差0.76分钟(P>0.05),情景模拟结果显示将患者候诊高峰上升趋势时间段号源均匀分配至其他时段,可减少普通门诊分时段预约患者39%的预约后平均等待时间。结论:调整线上、线下挂号途径号源投放量,削减候诊高峰,是减少医院门诊患者候诊时间的关键。通过离散事件模拟及号源分配应用,有助于促进医院门诊精细化管理。Objective:To explore an optimized method for allocating appointment slots in general outpatient departments and provide a basis for hospitals to dynamically adjust resources.Methods:Data from the dermatology general outpatient department of a Grade-A tertiary hospital in Wuhan in March 2019 was analyzed using discrete event simulation and appointment capacity allocation scenarios.Results:The average waiting time post-appointment was 15.08 minutes.64%of online appointment patients did not arrive before their allotted time.The simulation results differed by only 0.76 minutes from the hospital's actual data(P>0.05).Scenario simulations indicated that redistributing resources from peak waiting times to other periods could reduce the average waiting time by 39%for patients with time-slot appointments.Conclusion:Adjusting online and offline appointment capacities and reducing peak waiting times are key to minimizing outpatient waiting times.The use of discrete event simulation and resource allocation can significantly enhance the management efficiency of hospital outpatient services.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49