Single-shot non-line-of-sight imaging based on chromato-axial differential correlography  

在线阅读下载全文

作  者:LINGFENG LIU SHUO ZHU WENJUN ZHANG LIANFA BAI ENLAI GUO JING HAN 

机构地区:[1]Jiangsu Key Laboratory of Spectral Imaging and Intelligent Sense,Nanjing University of Science and Technology,Nanjing 210094,China

出  处:《Photonics Research》2024年第1期106-114,共9页光子学研究(英文版)

基  金:National Natural Science Foundation of China(61971227,62031018,62101255);Jiangsu Provincial Key Research and Development Program(BE2022391);China Postdoctoral Science Foundation(2021M701721,2023T160319)。

摘  要:Non-line-of-sight(NLOS)imaging is a challenging task aimed at reconstructing objects outside the direct view of the observer.Nevertheless,traditional NLOS imaging methods typically rely on intricate and costly equipment to scan and sample the hidden object.These methods often suffer from restricted imaging resolution and require high system stability.Herein,we propose a single-shot high-resolution NLOS imaging method via chromato-axial differential correlography,which adopts low-cost continuous-wave lasers and a conventional camera.By leveraging the uncorrelated laser speckle patterns along the chromato-axis,this method can reconstruct hidden objects of diverse complexity using only one exposure measurement.The achieved background stability through singleshot acquisition,along with the inherent information redundancy in the chromato-axial differential speckles,enhances the robustness of the system against vibration and colored stain interference.This approach overcomes the limitations of conventional methods by simplifying the sampling process,improving system stability,and achieving enhanced imaging resolution using available equipment.This work serves as a valuable reference for the real-time development and practical implementation of NLOS imaging.

关 键 词:AXIAL SPECKLE OVERCOME 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象