检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙申宇 陆志宏 宋新超 SUN Shenyu;LU Zhihong;SONG Xinchao(The 723 Institute of CSSC,Yangzhou 225101,China)
机构地区:[1]中国船舶集团有限公司第七二三研究所,江苏扬州225101
出 处:《舰船电子对抗》2024年第2期61-66,共6页Shipboard Electronic Countermeasure
摘 要:近年来,将深度学习应用于调制识别领域是个热门方向,但为了提高识别精度,不断复杂化的网络结构给硬件设备带来巨大压力,提出将MobileNetV2网络应用于调制识别的方法。首先生成11种调制信号的数据集,再利用MobileNetV2网络进行调制识别模型的训练,最后通过全连接层进行11种调制识别的分类输出。实验表明,MobileNetV2的识别率达到95%以上,相较于实验对比的2种卷积网络提高5%左右,且网络参数总量大大降低,训练时间也有所控制,降低了对硬件设备的需求。此方法对后续轻量化深度学习网络在调制识别中的应用有研究价值与意义。In recent years,the application of deep learning to the field of modulation recognition is a popular direction,but the constantly complex network structure puts great pressure on the hardware equipment for raising the recognition accuracy.This paper proposes a method using Mobile-NetV2 network in modulation recognition.Firstly,the dataset of 11 kinds of modulation signals is generated,then MobileNetV2 network is used to train the modulation recognition model,and finally the classification output of 11 kinds of modulation recognition is performed through the fully connected layer.The experiment shows that the recognition rate of MobileNetV2 reaches more than 95%,which is about 5%higher than that of the two convolutional networks in the experimental comparison,and the number of network parameters is greatly reduced,as well as the training time is controlled,which reduces the requirements to hardware devices.This method has research value and significance for the subsequent application of lightweight deep learning networks to modulation recognition.
分 类 号:TN975[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15