基于改进YOLOv5-ResNet的海上舰船SAR图像快速检测  被引量:2

Rapid Detection of SAR Images of Naval Vessels Based on Improved YOLOv5-ResNet

在线阅读下载全文

作  者:龙昊 张思佳 周晶[1] 王冠 LONG Hao;ZHANG Sijia;ZHOU Jing;WANG Guan(Dalian Navy Academy,Dalian 116018,China;Dalian Ocean University,Dalian 116018,China;Air-force communication NCO academy,Dalian 116600,China)

机构地区:[1]海军大连舰艇学院作战软件与仿真研究所,大连116018 [2]大连海洋大学信息工程学院,大连116018 [3]空军通信士官学校,大连116600

出  处:《宇航计测技术》2024年第2期52-59,共8页Journal of Astronautic Metrology and Measurement

摘  要:在恶劣天气和海浪等自然因素的影响下,基于可见光数据进行舰船目标监测等手段往往难以有效开展,需要借助主动式微波成像卫星合成孔径雷达(SAR)进行图像解译。为了解决深度学习在处理数据集较小图像上无法准确提取特征及数据相似度较高的问题,基于YOLOv5-ResNet提出了一种跨尺度融合机制,重新定义损失函数。研究表明,识别SAR舰船目标的准确率有一定的提升:识别单目标舰船检测最高准确度达到93%,同比YOLOv5提升4%,比YOLOv5-ResNet50提升20%;在近岸舰船目标检测上,有效降低了由于数据集质量不佳、模型训练方法不当等造成误差率的非必要上升。Under the influence of natural factors such as bad weather and waves,it is often difficult to effectively carry out ship target monitoring based on visible light data and other means,which requires the use of active microwave imaging satellite synthetic-aperture radar(SAR)for image interpretation.To address the issue of inaccurate feature extraction by deep learning when dealing with small datasets and images,as well as the problem of high data similarity,a cross-scale fusion mechanism based on YOLOv5-ResNet is proposed to redefine the loss function.The research shows that there is a certain improvement in the accuracy of identifying SAR ship targets:the maximum accuracy of identifying single ships is 93%,which is 4%higher than YOLOv5 and 20%higher than YOLOv5-ResNet50.In near-shore ship target detection,it effectively reduces the unnecessary increase in error rate caused by poor data set quality and inappropriate model training methods.

关 键 词:合成孔径雷达图像 星载SAR图像 舰船目标检测 YOLOv5 ResNet 跨尺度融合 

分 类 号:V243.5[航空宇航科学与技术—飞行器设计] TP75[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象