检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:龙昊 张思佳 周晶[1] 王冠 LONG Hao;ZHANG Sijia;ZHOU Jing;WANG Guan(Dalian Navy Academy,Dalian 116018,China;Dalian Ocean University,Dalian 116018,China;Air-force communication NCO academy,Dalian 116600,China)
机构地区:[1]海军大连舰艇学院作战软件与仿真研究所,大连116018 [2]大连海洋大学信息工程学院,大连116018 [3]空军通信士官学校,大连116600
出 处:《宇航计测技术》2024年第2期52-59,共8页Journal of Astronautic Metrology and Measurement
摘 要:在恶劣天气和海浪等自然因素的影响下,基于可见光数据进行舰船目标监测等手段往往难以有效开展,需要借助主动式微波成像卫星合成孔径雷达(SAR)进行图像解译。为了解决深度学习在处理数据集较小图像上无法准确提取特征及数据相似度较高的问题,基于YOLOv5-ResNet提出了一种跨尺度融合机制,重新定义损失函数。研究表明,识别SAR舰船目标的准确率有一定的提升:识别单目标舰船检测最高准确度达到93%,同比YOLOv5提升4%,比YOLOv5-ResNet50提升20%;在近岸舰船目标检测上,有效降低了由于数据集质量不佳、模型训练方法不当等造成误差率的非必要上升。Under the influence of natural factors such as bad weather and waves,it is often difficult to effectively carry out ship target monitoring based on visible light data and other means,which requires the use of active microwave imaging satellite synthetic-aperture radar(SAR)for image interpretation.To address the issue of inaccurate feature extraction by deep learning when dealing with small datasets and images,as well as the problem of high data similarity,a cross-scale fusion mechanism based on YOLOv5-ResNet is proposed to redefine the loss function.The research shows that there is a certain improvement in the accuracy of identifying SAR ship targets:the maximum accuracy of identifying single ships is 93%,which is 4%higher than YOLOv5 and 20%higher than YOLOv5-ResNet50.In near-shore ship target detection,it effectively reduces the unnecessary increase in error rate caused by poor data set quality and inappropriate model training methods.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.139.108.138