检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵洋[1] 任劼[1] ZHAO Yang;REN Jie(College of Electronic Information,Xi′an Polytechnic University,Xi′an,Shaanxi 710600,China)
机构地区:[1]西安工程大学电子信息学院,陕西西安710600
出 处:《自动化应用》2024年第7期13-16,共4页Automation Application
基 金:陕西省自然科学基础研究计划(2022JM-394);陕西省教育厅科研计划(19JK0364)。
摘 要:小样本学习的目的是使用极少的样本训练模型,并在有限的数据集上构建一种有效的模型,以实现对新样本的准确预测。关于小样本图像分类的研究大多只从空域的角度去提取图像的特征进行学习,且在计算相似性分数时采用单一的度量模式,极大地降低了图像分类的准确性。为此,提出了一种基于空频域特征提取的小样本图像分类算法网络(FENet),从空域和频域角度出发,提取图像特征,并结合图像到图像的度量与图像到类的度量方式,引入干扰因子,提高模型的鲁棒性和泛化性。在CUB-200-2011、Stanford-Cars、Stanford-Dogs 3个数据集上进行了大量的实验,结果表明,FENet在一定程度上能提升小样本图像分类的准确性。The purpose of few-shot learning is to train a model with very few samples and build an effective model on a limited dataset to achieve accurate prediction of new samples.Most studies on few-shot image classification only extract image features from the perspective of spatial domain for learning,and use a single measurement mode when calculating similarity scores,greatly reducing the accuracy of image classification.To this end,a few-shot image classification algorithm network(FENet)based on spatial-frequency domain feature extraction is proposed.From the perspectives of spatial and frequency domains,image features are extracted,and combined with image to image and image to class metrics,interference factors are introduced to improve the robustness and generalization of the model.A large number of experiments were conducted on the CUB-200-2011,Stanford Cars,and Stanford Dogs datasets,and the results showed that FENet can improve the accuracy of few-shot image classification to a certain extent.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3