检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:胡伦瑜 夏威 李琼[3] 高欣 HU Lunyu;XIA Wei;LI Qiong;GAO Xin(School of Biomedical Engineering(Suzhou),Division of Life Sciences and Medicine,University of Science and Technology of China,Hefei 230026,P.R.China;Suzhou Institute of Biomedical Engineering and Technology,Chinese Academy of Sciences,Suzhou,Jiangsu 215163,P.R.China;Department of Radiology,Sun Yat-sen University Cancer Center,Guangzhou 510060,P.R.China;Jinan Guoke Medical Engineering and Technology Development Co.,Ltd.,Jinan 250101,P.R.China)
机构地区:[1]中国科学技术大学生命科学与医学部生物医学工程学院(苏州),合肥230026 [2]中国科学院苏州生物医学工程技术研究所,江苏苏州215163 [3]中山大学肿瘤防治中心影像科,广州510060 [4]济南国科医工科技发展有限公司,济南250101
出 处:《生物医学工程学杂志》2024年第2期205-212,共8页Journal of Biomedical Engineering
基 金:国家自然科学基金(82372052);山东省重点研发计划(2021SFGC0104);山东省泰山产业创新领军人才;苏州市科技计划项目(SJC2021014)。
摘 要:计算机断层成像(CT)是肺腺癌诊断与评估的重要工具,利用CT图像预测肺腺癌患者手术后的无复发生存期(RFS)对于术后治疗方案的制定具有重要意义。针对CT图像的肺腺癌RFS精准预测难题,本文提出了一种基于自监督预训练和多任务学习的肺腺癌RFS预测方法。采用“图像变换—图像恢复”的自监督学习策略,在公开肺部CT数据集上对3D-UNet网络进行自监督预训练解析肺部图像的通用视觉特征,通过分割与分类的多任务学习策略进一步优化网络特征提取能力,引导网络提取与RFS相关的图像特征,同时设计多尺度特征聚合模块以充分聚合多尺度的图像特征,最后借助前馈神经网络预测肺腺癌RFS风险评分。通过十折交叉验证评估所提方法的预测性能。结果显示,所提方法预测RFS的一致性指数(C-index)与预测三年内是否复发的曲线下面积(AUC)分别达到0.691±0.076与0.707±0.082,预测性能优于现有方法。综上,本研究所提方法在肺腺癌患者RFS预测方面表现出潜在的优越性,有望为个体化治疗方案的制定提供可靠依据。Computed tomography(CT)imaging is a vital tool for the diagnosis and assessment of lung adenocarcinoma,and using CT images to predict the recurrence-free survival(RFS)of lung adenocarcinoma patients post-surgery is of paramount importance in tailoring postoperative treatment plans.Addressing the challenging task of accurate RFS prediction using CT images,this paper introduces an innovative approach based on self-supervised pre-training and multi-task learning.We employed a self-supervised learning strategy known as“image transformation to image restoration”to pretrain a 3D-UNet network on publicly available lung CT datasets to extract generic visual features from lung images.Subsequently,we enhanced the network’s feature extraction capability through multi-task learning involving segmentation and classification tasks,guiding the network to extract image features relevant to RFS.Additionally,we designed a multi-scale feature aggregation module to comprehensively amalgamate multi-scale image features,and ultimately predicted the RFS risk score for lung adenocarcinoma with the aid of a feed-forward neural network.The predictive performance of the proposed method was assessed by ten-fold cross-validation.The results showed that the consistency index(C-index)of the proposed method for predicting RFS and the area under curve(AUC)for predicting whether recurrence occurs within three years reached 0.691±0.076 and 0.707±0.082,respectively,and the predictive performance was superior to that of existing methods.This study confirms that the proposed method has the potential of RFS prediction in lung adenocarcinoma patients,which is expected to provide a reliable basis for the development of individualized treatment plans.
关 键 词:计算机断层成像 肺腺癌 术后复发 自监督学习 多任务学习
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TP391.41[自动化与计算机技术—控制科学与工程] R734.2[医药卫生—肿瘤]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15