检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘海波 廖群英 朱灿泽 LIU Haibo;LIAO Qunying;ZHU Canze(School of Applied Mathematics,Chengdu University of Information Technology,Chengdu,Sichuan,610225,P.R.China;School of Mathematical Sciences,Sichuan Normal University,Chengdu,Sichuan,610066,P.R.China)
机构地区:[1]成都信息工程大学应用数学学院,四川成都610225 [2]四川师范大学数学科学学院,四川成都610066
出 处:《数学进展》2024年第2期390-406,共17页Advances in Mathematics(China)
基 金:supported by NSFC(No.11901062);supported by NSFC(No.12071321)。
摘 要:最近,极小码因其在秘钥共享和二方计算中的应用被广泛研究.构造反Ashikhmin-Barg界的极小码,然后确定其完全重量计数器是编码与密码中有趣的研究.本文基于指数和与Krawtchouk多项式,利用定义在F_(3)^(m)中的向量集函数给出了两类反Ashikhmin-Barg三元极小码,并确定了其完全重量计数器.Recently,minimal linear codes have been extensively studied due to their applications in secret sharing schemes and two-party computations.Constructing minimal linear codes violating the Ashikhmin–Barg condition and then determining their weight distributions are interesting in coding theory and cryptography.In this paper,based on exponential sums,Krawtchouk polynomials and a function defined on special sets of vectors in F_(3)^(m),two new classes of minimal ternary linear codes violating the Ashikhmin–Barg condition are presented,and then their complete weight enumerators are determined.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.244