检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:XIAO Shanshan CHEN Mengyi ZHANG Ruili TANG Yifa
机构地区:[1]LSEC,ICMSEC,Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100190,China [2]School of Mathematical Sciences,University of Chinese Academy of Sciences,Beijing 100049,China [3]School of Mathematics and Statistics,Beijing Jiaotong University,Beijing 100044,China
出 处:《Journal of Systems Science & Complexity》2024年第2期441-462,共22页系统科学与复杂性学报(英文版)
基 金:supported by the National Natural Science Foundation of China under Grant Nos.12171466 and 12271025.
摘 要:In this paper,the authors propose a neural network architecture designed specifically for a class of Birkhoffian systems—The Newtonian system.The proposed model utilizes recurrent neural networks(RNNs)and is based on a mathematical framework that ensures the preservation of the Birkhoffian structure.The authors demonstrate the effectiveness of the proposed model on a variety of problems for which preserving the Birkhoffian structure is important,including the linear damped oscillator,the Van der Pol equation,and a high-dimensional example.Compared with the unstructured baseline models,the Newtonian neural network(NNN)is more data efficient,and exhibits superior generalization ability.
关 键 词:BIRKHOFFIAN system k(z t)-symplectic NEURAL NETWORKS RECURRENT NEURAL network
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.140.58