基于改进粒子群算法的四旋翼BSMRC优化策略  

BSMRC optimization strategy of quadrotor based on improved particle swarm optimization algorithm

在线阅读下载全文

作  者:任恩泽 曾庆华 宋甫俊 田大江 郭运伟 王宏福 REN Enze;ZENG Qinghua;SONG Fujun;TIAN Dajiang;GUO Yunwei;WANG Hongfu(School of Aeronautics and Astronautics,Sun Yat-sen University,Shenzhen 518107,China)

机构地区:[1]中山大学航空航天学院,广东深圳518107

出  处:《兵器装备工程学报》2024年第4期238-246,共9页Journal of Ordnance Equipment Engineering

基  金:国家自然科学基金项目(61174120)。

摘  要:针对四旋翼无人机反步滑模鲁棒控制器(BSMRC)因参数整定困难而限制其工程应用的问题,设计了一种基于改进粒子群算法(IPSO)的BSMRC参数优化策略。建立了含未知扰动的无人机非线性模型并设计了补偿未知扰动的BSMRC,通过Lyapunov第2方法对系统稳定性进行了证明。接着,从惯性权重和学习因子两方面对经典PSO算法改进,提升了其收敛速度,在此基础上自动整定了BSMRC参数。通过仿真表明了IPSO可使BSMRC参数快速收敛到最优解。通过模块化编程及自动代码生成技术将最优BSMRC算法部署至Pixhawk 4飞控进行了飞行实验,结果表明了IPSO优化策略的有效性,体现出了BSMRC的强鲁棒性和抗扰性。该优化策略解决了无人机BSMRC参数整定效率低下的问题,并采用基于模型设计(model-based design,MBD)技术提高了无人机控制系统的开发效率。Aiming at the problem that the engineering application of backstepping sliding mode robust controller(BSMRC)of quadrotor UAV is limited due to the difficulty of parameter turning,a BSMRC parameter optimization strategy based on IPSO algorithm is designed.A nonlinear model of UAV with unknown disturbance is established and a BSMRC that compensates for the unknown disturbance is designed,and the system stability is proved by the second method of Lyapunov.The classic PSO algorithm is improved from the two aspects of inertia weight and learning factor,and its convergence speed is improved.On this basis,the BSMRC parameters are automatically adjusted.The simulation shows that IPSO can make the BSMRC parameters quickly converge to the optimal solution.Through modular programming and automatic code generation technology,the optimal BSMRC algorithm is deployed to the Pixhawk flight controller for flight experiments.The results show the effectiveness of the IPSO optimization strategy,reflecting the strong robustness and immunity of BSMRC.This optimization strategy solves the problem of low efficiency of UAV BSMRC parameter tuning,and uses Model-Based Design(MBD)technology to improve the development efficiency of UAV control system.

关 键 词:四旋翼无人机 反步滑模鲁棒控制器 姿态控制 IPSO算法 LYAPUNOV方法 参数优化整定 MBD 

分 类 号:V279[航空宇航科学与技术—飞行器设计] TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象