检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]五矿矿业控股有限公司智慧矿山研究院 [2]五矿矿业(安徽)工程设计有限公司 [3]天津理工大学
出 处:《电气技术与经济》2024年第4期55-57,共3页Electrical Equipment and Economy
摘 要:随着工业自动化与智能化发展,矿山电气设备的管理控制愈发复杂。传统控制方法在应对多变的工作环境和实时监测需求上存在较大局限性,迫切需要更加智能化的解决方案。人工智能技术的出现为矿山电气设备的智能识别与自适应控制提供了新的思路。其中,YOLO模型和CNN算法作为深度学习领域的重要成果,能在图像处理和数据分析方面发挥重要作用,为电气设备的智能化管理提供有效的技术支持。本文以基于人工智能的矿山电气设备智能识别与自适应控制为研究主题,设计了基于YOLO模型的智能识别模型和基于CNN的自适应控制模型,测试结果表明模型在实际应用中的效果较佳,具有较高的推广价值。
分 类 号:TD60[矿业工程—矿山机电] TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90