基于L_(1/2)范数的非局部PCA泊松噪声图像恢复改进算法  

Improved Algorithm for Non-local PCA Poisson Noise Image Restoration Based on L_(1/2) Norms

在线阅读下载全文

作  者:李欢[1] 张文娟 黄姝娟[2] 肖锋[2] LI Huan;ZHANG Wenjuan;HUANG Shujuan;XIAO Feng(College of Sciences,Xi’an Technological University,Xi’an 710016,Shaanxi,China;College of Computer Science and Information Engineering,Xi’an Technological University,Xi’an 710016,Shaanxi,China)

机构地区:[1]西安工业大学基础学院,陕西西安710016 [2]西安工业大学计算机科学与工程学院,陕西西安710016

出  处:《咸阳师范学院学报》2024年第2期10-15,30,共7页Journal of Xianyang Normal University

基  金:国家自然科学基金面上项目(62171361);陕西省重点研发计划(2022GY-119);陕西省科技厅自然科学基础研究计划项目(2021JM-440);陕西省科技厅工业攻关项目(2020GY-066)。

摘  要:为增强NLSPCA(非局部稀疏主成分分析)算法对去除图像泊松噪声性能,提高图像块聚类精确度,增大字典下的表示系数稀疏性,改善恢复图像易模糊等问题,提出基于L_(1/2)范数的非局部PCA泊松噪声图像恢复改进算法(L_(1/2)-NLSPCA)。新算法首先对图像分割成重叠块;其次采用设计的自适应Bregman K-means算法对分割的图像块聚类;最后使用PCA构建基于L_(1/2)范数的非局部字典下的稀疏表示系数,对聚类后的图像块分组进行去噪重构。实验结果表明,L_(1/2)-NLSPCA算法与基准算法相比峰值信噪比(PSNR)提高了0.52~2.57 dB,在视觉上纹理细节更清晰。In order to mitigate the issue of image blurring during restoration by using the original NLSPCA(Non-Local Sparse Principal Component Analysis),we propose a novel non-local PCA Poisson noise image restoration algorithm based on L_(1/2) norms(L_(1/2)-NLSPCA)to improve enhance the performance in removing Poisson noise from images.Firstly,the proposed method segments the image into overlapping blocks;secondly,the designed adaptive Bregman K-means algorithm clusters the segmented image blocks to improve the accuracy of image block clustering;finally,we utilize PCA to construct a non-local dictionary and obtain sparse representation coefficients based on L_(1/2) norms,which are subsequently employed in the denoising and reconstruction of the clustered image blocks.L_(1/2) norms can increase the sparsity of the representation coefficients under the dictionary more efficiently.Experimental results show that the L_(1/2)-NLSPCA algorithm improves the peak signal-to-noise ratio(PSNR)by 0.52 to 2.57 dB compared to with the benchmark algorithm,and the texture details are clearer visually visually clearer.

关 键 词:泊松分布 图像去噪 主成分分析 L_(1/2)范数 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象