检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王芳 王熙[1] 兰文娟 杨智超 孙碧婷 刘颖[1] 谷宇[2] 白洁 唐思源[4] WANG Fang;WANG Xi;LAN Wenjuan;YANG Zhichao;SUN Biting;LIU Ying;GU Yu;BAI Jie;TANG Siyuan(Department of Stomatology,Sinopharm North Hospital,Baotou 014030,China;School of Information Engineering,Inner Mongolia University of Science and Technology,Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing,Baotou 014010,China;Department of Cardiology,The First Affiliated Hospital of Baotou Medical College,Inner Mongolia University of Science and Technology,Baotou 014010,China;Baotou Medical College,Inner Mongolia University of Science and Technology,Baotou 014040,China)
机构地区:[1]国药北方医院口腔科,内蒙古包头014030 [2]内蒙古科技大学信息工程学院,内蒙古自治区模式识别与智能图像处理重点实验室,内蒙古包头014010 [3]内蒙古科技大学包头医学院第一附属医院心内科,内蒙古包头014010 [4]内蒙古科技大学包头医学院,内蒙古包头014040
出 处:《中国医学影像技术》2024年第4期591-597,共7页Chinese Journal of Medical Imaging Technology
基 金:包头市卫生健康科技项目计划(wsjkwkj021);包头医学院科学研究基金(BYJJ-ZRQM 202009)。
摘 要:目的 观察基于知识蒸馏改进U-Net网络模型用于分割CT图像中的口腔颌面部肿瘤的价值。方法 收集2个医疗中心121例口腔颌面部肿瘤患者共609幅CT图像;于公开数据集HECKTOR2020搜集254例口腔颌面部肿瘤患者共1 977幅CT图像。向U-Net网络模型中引入多尺度和注意力机制,加入残差网络,建立改进U-Net模型;采用知识蒸馏技术生成学生模型,观察模型分割CT图像中的口腔颌面部肿瘤的效能。结果 改进U-Net模型大小为89.30 MB,参数数量为17.82 M,计算量为22.13 GFlops;其分割CT所示口腔颌面部肿瘤的精确率(Precision)、召回率(Recall)、戴斯相似系数和交并比分别为0.835、0.787、0.812及0.761,优于既往结合常规损失函数(Dice Loss function)所获模型及未改进模型;且除Precision之外,学生模型与教师模型差异较小。结论 基于知识蒸馏改进U-Net网络模型用于分割CT图像中的口腔颌面部肿瘤具有较高价值。Objective To observe the value of an improved U-Net network model based on knowledge distillation for segmenting oral and maxillofacial tumors on CT images.Methods Totally 609 CT images of 121 patients with oral and maxillofacial tumors from 2 medical centers were collected.Meanwhile,1977 CT images of 254 patients with oral and maxillofacial tumors in public dataset HECKTOR2020 were selected.The multi-scale and attention mechanisms were introduced into U-Net network model to establish an improved U-Net model combining with residual network.Knowledge distillation technology was used to generate student models.The efficacy of the improved U-Net model for segmenting oral and maxillofacial tumor on CT images was observed.Results The improved U-Net model had a size of 89.30 MB,a parameter count of 17.82 M and a computational load of 22.13 GFlops.The Precision,Recall,Dice similarity coefficient and intersection over union of the improved U-Net for segmenting oral and maxillofacial tumors on CT images was 0.835,0.787,0.812,and 0.761,respectively,superior to those of models established with previous methods combined with conventional Dice Loss function and unimproved model.Except for Precision,the model had relatively small difference with its teacher model.Conclusion Improved U-Net network model based on knowledge distillation was valuable for segmenting oral and maxillofacial tumors on CT images.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.247.210