跳数受限下的传感云网络多Sink节点重选址方法  

Relocation of Multi Sink Nodes in Sensor Cloud Networks with Hop Constraints

在线阅读下载全文

作  者:钟林[1,2] 刘利 ZHONG Lin;LIU Li(School of Artificial Intelligence&Big Data,Luzhou Vocational and Technical College,Luzhou Sichuan 646000,China;School of Information and Software Engineering,University of Electronic Science and Technology of China,Chengdu Sichuan 610054,China)

机构地区:[1]泸州职业技术学院人工智能与大数据学院,四川泸州646000 [2]电子科技大学信息与软件工程学院,四川成都610054

出  处:《传感技术学报》2024年第3期533-538,共6页Chinese Journal of Sensors and Actuators

基  金:泸州职业技术学院2022年校级科研项目(KB-2205)。

摘  要:当传感云网络中的Sink节点处于静止状态时,分布在其周围的邻居节点极易出现“能量空洞”,导致能量消耗不均,节点出现不同的网络生存期,影响节点间数据正常传输。为此,在限制节点跳数的前提下,提出一种多Sink节点重选址方法。基于Sink节点寿命和传感云网络代价函数引入质心理论,建立质点系并确定质心位置;将Sink节点向流量大的节点移动,并与其他Sink节点相互协作、避免发生冲突,直至到达质心位置,实现多Sink节点重选址。结果表明,所提方法重选址的节点生存时间最高为1 000 s为,数据包交付率为98%,节点平均剩余能量值高于0.6 J。When the Sink node in the sensor cloud network is in a static state,the neighbor nodes distributed around it are prone to “energy holes”,resulting in different network lifetime of nodes with uneven energy consumption,which affects the normal transmission of data between nodes.Therefore,under the premise of limiting the number of hops,a multi Sink node relocation method is proposed.Based on the lifetime of Sink node and the cost function of sensor cloud network,the mass center theory is introduced to establish the mass point system and determine the position of the mass center.The Sink node is moved to the node with large traffic,and cooperate with other Sink nodes to avoid conflicts until it reaches the center of mass,so as to realize the relocation of multiple Sink nodes.The results show that the maximum node lifetime of the proposed method is 1 000 s,the packet delivery rate is 98%,and the average residual energy value of nodes is higher than 0.6 J.

关 键 词:传感云网络 SINK节点 节点重选址 质点系 网络生存期 

分 类 号:TP365[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象