检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谢宪毅 王禹涵 金立生 赵鑫 郭柏苍 廖亚萍 周彬[5] 李克强[2] XIE Xian-yi;WANG Yu-han;JIN Li-sheng;ZHAO Xin;GUO Bai-cang;LIAO Ya-ping;ZHOU Bin;LI Ke-qiang(School of Vehicle and Energy,Yanshan University,Qinhuangdao 066004,China;State Key Laboratory Automotive Safety and Energy,Tsinghua University,Beijing 100084,China;Electrical and Electronics,General R&D Institute of China FAW Co.,Ltd.,Changchun 130011,China;Key Laboratory of Unmanned Transportation Technology for Special Vehicles,Ministry of Industry and Information Technology,Beihang University,Beijing 100191,China;National Key Laboratory of Vehicle-Road Integrated Intelligent Transportation,Beihang University,Beijing 100191,China)
机构地区:[1]燕山大学车辆与能源学院,河北秦皇岛066004 [2]清华大学汽车安全与节能国家重点实验室,北京100084 [3]中国第一汽车集团公司智能网联开发院,长春130011 [4]北京航空航天大学特种车辆无人运输技术工业和信息化部重点实验室,北京100191 [5]北京航空航天大学车路一体智能交通全国重点实验室,北京100191
出 处:《吉林大学学报(工学版)》2024年第3期620-630,共11页Journal of Jilin University:Engineering and Technology Edition
基 金:国家自然科学基金项目(52072333);汽车安全与节能国家重点实验室开放基金项目(KFY2211);河北省省级科技计划项目(F2021203107,F2022203054).
摘 要:为了解决模型预测控制设计智能车轨迹跟踪控制器存在求解计算时间长、在线实时性低的问题,借助于矩阵分块化策略,提出了一种基于控制时域变步长的模型预测轨迹跟踪控制方法。通过矩阵分块化改变控制时域步长,并融入到二次规划的求解过程中,重构目标函数形式和系统约束条件,以减少求解过程中最优控制序列中待求解变量的数量,降低求解计算时间。在Simulink与Carsim联合仿真平台中,将本文方法与传统模型预测控制方法进行仿真对比分析。结果表明,相比于传统模型预测控制方法,本文方法在保证轨迹跟踪精度的前提下,平均求解计算时间降低了24.39%,最大单次计算时间降低了45.05%,采用“前密后疏”的分块矩阵,其控制器性能优于“平均化”的分块矩阵。In order to solve the intelligent vehicle trajectory tracking controller based on model predictive control with long processing time and low real-time performance,a model predictive trajectory tracking control method based on variable step size in the control time domain was proposed using matrix-blocking strategy.The matrixblocking method was used to change the control time domain step size and integrated into the quadratic programming solution process of model predictive control,and the objective function and system constraints were reconstructed to reduce the number of variables to be solved in the optimal control sequence during the solution process,and the calculation time are also be reduced.Based on Simulink and CarSim co-simulation platform,the proposed method was compared with the traditional model predictive control method.The results demonstrate that compared with the traditional model predictive control method,the proposed method not only reduces the average calculation time by 24.39%and the maximum single calculation time by 45.05%,but also ensuring the trajectory tracking accuracy.The performance of the controller using the dense before sparse block matrix is better than the average block matrix.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200