检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王汉顺 WANG Hanshun(Xiamen MinKuang Survering&Mapping Institute,Xiamen,Fujian 361004,China)
出 处:《测绘标准化》2024年第1期166-170,共5页Standardization of Surveying and Mapping
摘 要:为了改变传统人力巡检长距离电力线效率低下的问题,提高生产效率,满足电网智能化管理需求,本文基于机载激光雷达(LiDAR)点云数据,采用凝聚层次聚类算法,利用C语言编程,实现了对电力线点云的快速和精确提取,并通过实例进行验证。结果表明,凝聚层次聚类算法对电力线点云提取的准确率达99.99%,避雷线最小拟合残差为0.11 m,电力线最小拟合残差为0.19 m,最大拟合残差为0.21 m,平均拟合残差为0.20 m。该算法的自动化实现过程,可提高电力线的巡检效率,获取较好的测试效果。In order to change the drawbacks of low efficiency in traditional manual inspection of long-distance power lines,improve production efficiency,and meet the needs of intelligent management of power grids,this paper is based on airborne LiDAR point cloud data,adopts the agglomerative clustering algorithm,uses C language programming to achieve rapid and accurate extraction of power line point clouds,and verifies through examples.The results show that the accuracy of the agglomerative clustering algorithm in extracting power line point clouds is 99.99%,the minimum fitting residual of the lightning line is 0.11 m,the minimum fitting residual of the power line is 0.19 m,the maximum fitting residual is 0.21 m,and the average fitting residual is 0.20 m.The automated implementation process of the algorithm can improve the inspection efficiency of power lines and obtain better test results.
关 键 词:LIDAR点云 凝聚层次聚类 电力线 三维重建 精度评定
分 类 号:P205[天文地球—测绘科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.128.190.174