基于有限时间干扰观测器的改进模型水下机器人自适应鲁棒容错控制  

Improved Model Unmanned Underwater Vehicle Adaptive Robust Fault-tolerant Control Based on Finite Time Disturbance Observer

在线阅读下载全文

作  者:唐军[1] 陈善颖 谢彬 钱明炎 TANG Jun;CHEN Shan-ying;XIE Bin;QIAN Ming-yan(Mechanical and Electrical Engineering College,Jiangxi University of Science and Technology,Ganzhou 314000,China)

机构地区:[1]江西理工大学机电工程学院,赣州314000

出  处:《科学技术与工程》2024年第11期4574-4582,共9页Science Technology and Engineering

基  金:国家自然科学基金(51864015)。

摘  要:针对无人水下机器人(unmanned underwater vehicle,UUV)工作中存在的执行器故障,在系统不确定性与外界干扰下,提出一种基于有限时间扰动观测器(finite time disturbance observer,FTDO),并结合改进模型的自适应鲁棒容错控制方法。一方面,FTDO能在有限时间内对外界环境干扰进行估计;另一方面利用滑模控制加上径向基神经网络(radial basis function neyral network,RBF)的万能逼近特性,建立带有执行器故障的输入补偿;其中改进模型的引入解决了系统不确定性导致的输入饱和,提高了稳定性与鲁棒性;其次采用一种新型的双幂趋近律使滑模量在更短时间收敛到稳态误差界内;仿真与水池实验结果表明了所提方法相对于滑模控制有着更好的容错效果。Aiming at the actuator failure in the work of unmanned underwater vehicle(UUV),an adaptive robust fault-tolerant control method based on finite time disturbance observer(FTDO)and improved model was proposed under system uncertainty and external interference.On the one hand,the external environmental interference could be estimated by FTDO in a limited time.On the other hand,sliding mode control and the universal approximation characteristics of radial basis function neyral network(RBF)were used to establish input compensation with actuator fault.Among them,the input saturation caused by system uncertainty was solved by the improved model,which improved the stability and robustness.Secondly,a new type of double-power approximation law was adopted to make the sliding modulus converge to the steady-state error range in a shorter time.The simulation and pool experimental results show that the proposed method has a better fault tolerance effect than the sliding mode control.

关 键 词:无人水下机器人 FTDO 改进模型 RBF自适应滑模 快速双幂趋近律 

分 类 号:TP242[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象