检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杜铭辉 吴林煌[1] 苏喆 DU Minghui;WU Linhuang;SU Zhe(School of Physics and Information Engineering,Fuzhou University,Fuzhou 350108,China)
机构地区:[1]福州大学物理与信息工程学院,福建福州350108
出 处:《电视技术》2024年第3期50-54,64,共6页Video Engineering
摘 要:针对现有车牌检测算法存在的模型参数量过大、实时性差和检测效果不佳等问题,提出一种基于深度学习的轻量化车牌检测网络(Lightweight License Plate Detection Networks,LW-LPDNet)模型。该模型以PP-LCNet作为骨干网络,大幅减少模型参数量,同时融入压缩-激励网络(Squeeze and Excitation Networks,SE-Net)注意力模块,增加车牌信息的通道权重。最后,引入SimSPPF和GSConv,对多尺度特征进行融合,增大感受野,进一步提高检测准确率。通过对模型进行训练和测试,LW-LPDNet在中国城市停车数据集(Chinese City Parking Dataset,CCPD)上获得98.9%的平均精确率,优于其他车牌检测方法,且模型参数量仅有0.13 MB,检测速度达到243 f·s^(-1),具备较高的实时性。Aiming at the problems of the existing License Plate Detection algorithms,such as large number of model parameters,poor real-time performance and poor detection effect,a Lightweight License Plate Detection Networks(LW-LPDNet)model based on deep learning was proposed.In this model,PP-LCNet is used as the backbone network,the number of model parameters is greatly reduced,and the attention module of Squeeze and Excitation Networks(SE-Net)is integrated to increase the channel weight of license plate information.Finally,SimSPPF and GSConv were introduced to fuse the multi-scale features,enlarge the receptive field,and further improve the detection accuracy.Through the training and testing of the model,LW-LPDNet obtained an average accuracy rate of 98.9%on the Chinese City Parking Dataset(CCPD),which was better than other license plate detection methods,and the model parameter size was only 0.13MB.The detection speed reaches 243 f·s^(-1),and the real-time performance is high.
分 类 号:TP391.7[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.118.126.94