检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈佳琳 杨春夏 CHEN Jialin;YANG Chunxia(College of Information,Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 201418,China)
机构地区:[1]上海师范大学信息与机电工程学院,上海201418
出 处:《上海师范大学学报(自然科学版中英文)》2024年第2期273-277,共5页Journal of Shanghai Normal University(Natural Sciences)
基 金:国家自然科学基金(61801293)。
摘 要:利用神经网络将电磁逆散射问题与多尺度方法相结合,通过将散射场的场强数值输入多尺度融合模型中进行不断训练,实现目标的定位与重构.对于目标区域内的手写数字散射体,首先利用Lenet网络模型定位目标散射体所在的区域;然后将散射体所在的区域进一步通过SmaAt-UNet神经网络学习,训练重构散射体的形状,进而确定该数字,不同的模型负责提取不同的特征;最后将特征融合在一起,以增强最终结果的表征能力.The electromagnetic inverse scattering problem was combined with multi-scale method by using neural network in this paper.The target location and reconstruction were realized by inputting the field strength value of scattering field into multi-scale fusion model for continuous training.Firstly,for the handwritten digital scatterer in the target area,the Lenet network model was adopted to locate the area where the target scatterer was.Secondly,the area where the scatterer located was further learned by SmaAt-UNet neural network,and the shape of the reconstructed scatterer was trained to determine the number.Different models were responsible for extracting different features respectively.Finally,these features were integrated to enhance the characterization ability of the final result.
关 键 词:电磁逆散射 多尺度 深度学习 Lenet SmaAt-UNet
分 类 号:TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.180.66