检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨雨桐 和红杰[2] YANG Yutong;HE Hongjie(School of Computing and Artificial Intelligence,Southwest Jiaotong University,Chengdu 611756,China;School of Information Science and Technology,Southwest Jiaotong University,Chengdu 611756,China)
机构地区:[1]西南交通大学计算机与人工智能学院,成都611756 [2]西南交通大学信息科学与技术学院,成都611756
出 处:《计算机工程与应用》2024年第10期132-139,共8页Computer Engineering and Applications
基 金:国家自然科学基金(U1936113,61872303)。
摘 要:随着深度学习技术在工业领域的大量部署,应用于运输、装卸、包装、分拣等环节的自动化系统成为仓储物流行业的研究热点。针对机器人箱体拆垛场景提出一个点云中心预测-聚类网络(center prediction-clustering network,CPCN),对箱体垛进行实例分割,并计算每个箱体的上表面中心坐标。CPCN在传统的语义-实例联合分割结构的基础上,为实例分割分支设计了中心预测模块和中心强化模块。中心预测模块帮助定位实例中心以避免中心点分割错误,中心强化模块令属于同一实例的点在特征空间中向中心聚集,二者有效增强了实例特征的辨识能力。在实例特征处理部分设计的中心-实例聚类方法直接对实例特征进行距离度量来计算实例标签,大幅减少了计算时间。在箱体数据集上进行的实验表明,与现有方法相比CPCN在实例分割任务中的平均精确率最低提高了0.7个百分点,最高提高了17.2个百分点,预测实例中心的准确率达到94.4%,中心偏移量低至13.70 mm,且推理速度快于同类型的联合分割网络,对于箱体拆垛任务更有针对性,具有良好的应用价值。With the extensive deployment of deep learning technology in industry,automated systems applied in transpor-tation,loading and unloading,packaging,sorting and other links have become a research hotspot in warehousing and logistics industry.Aiming at robot box unstacking scene,a point cloud center prediction-clustering network(CPCN)is proposed based on the deep learning method,which can segment the box stack and calculate the center coordinates of the upper surface of each box.Based on the traditional semantic-instance joint segmentation structure,CPCN designs a cen-tral prediction module and a central reinforcement module for the instance segmentation branch.The central prediction module avoids the error of central point segmentation by directly locating the instance center,and the central reinforce-ment module makes the points belonging to the same instance converge to the center in the feature space,both of which effectively enhance the identification ability of the instance features.In addition,the central-instance clustering method designed in the part of instance feature processing calculates the instance label by directly measuring the distance of the instance feature,which greatly reduces the computing time.Experiments on the box data set show that compared with the existing methods,the average accuracy of CPCN is improved by 0.7 percentage points at the lowest and 17.2 percentage points at the highest,the accuracy of instance center reaches 94.4%,the center offset is as low as 13.70 mm,and the reasoning speed is faster than that of the same type of joint division network.CPCN is more targeted for the box instance segmentation and has good application value.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28