轨道交通装备PHM技术现状与发展趋势  被引量:2

Current status and development trends of PHM technology for rail transit equipment

在线阅读下载全文

作  者:廖致远 邓江明 舒瑶 朱颖谋 黄众 LIAO Zhiyuan;DENG Jiangming;SHU Yao;ZHU Yingmou;HUANG Zhong(State Key Laboratory of Heavy-duty and Express High-power Electric Locomotive;CRRC Zhuzhou Locomotive Co.,Ltd.:Zhuzhou 412001,China)

机构地区:[1]重载快捷大功率电力机车全国重点实验室 [2]中车株洲电力机车有限公司,湖南株洲412001

出  处:《电力机车与城轨车辆》2024年第3期8-16,共9页Electric Locomotives & Mass Transit Vehicles

摘  要:随着我国轨道交通装备的运行里程和运营速度不断提升,故障预测与健康管理(PHM)技术是保障其持续长距离、大规模、高密度运营的安全可靠性的关键技术之一。文章总结了近年来轨道交通装备PHM技术的国内外应用情况和技术特点,梳理了状态监测、故障诊断、故障预测、寿命预测、智能运维等关键技术的研究方法与发展趋势。结合人工智能(AI)、机器学习、云计算等信息技术,未来轨道交通装备PHM技术将趋向AI驱动的智能化、自动化综合性健康管理和智能运维,提高可用性、安全性和效率,降低全寿命维护成本,推动轨道交通的可持续发展。With the continuous increase in operational mileage and operating speed of China’s rail transit equipment,prognostics health management(PHM)technology has become one of the key technologies to ensure the safety and reliability of its sustained long-distance,large-scale,and high-density operations.This paper summarizes the domestic and international applications of PHM technology for rail transit equipment in recent years,as well as its technical characteristics.It outlines the research methods and development trends for key technologies such as state monitoring,fault diagnosis,fault prediction,life prediction,and intelligent operation and maintenance.Combining artificial intelligence(AI),machine learning,cloud computing,and other information technologies,the future of PHM technology for rail transit equipment will trend towards AI-driven intelligence,automation,comprehensive health management,and intelligent operation and maintenance.This will enhance availability,safety,and efficiency while reducing the overall life-cycle maintenance costs,promoting the sustainable development of rail transit.

关 键 词:PHM技术 故障预测 健康管理 智能运维 

分 类 号:U279[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象