非概率抽样估计中先验信息的利用——基于贝叶斯模型估计视角  

The Use of Prior Information in Non-probability Sampling and Inference--A Research of Bayesian Model-based Inference

在线阅读下载全文

作  者:郝一炜 刘晓宇 金勇进[3,4] Hao Yiwei;Liu Xiaoyu;Jin Yongjin(Beijing Ditan Hospital,Capital Medical University;School of Statistics,Capital University of Economics and Business;Center of Applied Statistics,Renmin University of China;School of Statistics,Renmin University of China)

机构地区:[1]首都医科大学附属北京地坛医院 [2]首都经济贸易大学统计学院 [3]中国人民大学应用统计科学研究中心 [4]中国人民大学统计学院

出  处:《调研世界》2024年第5期86-96,共11页The World of Survey and Research

基  金:国家社会科学基金青年项目“大数据背景下的抽样调查理论及数据融合推断方法研究”(23CTJ027)的资助。

摘  要:非概率样本的估计问题是近年来的研究热点,本文以调查中先验信息的利用作为切入点,在配额抽样下设置贝叶斯形式的超总体模型,使用样本信息与先验信息对总体目标变量进行加权估计,从而解决非概率样本的估计问题。通过对北京市医疗资源调查的实证研究,表明先验信息的准确性和权重的合理分配决定着贝叶斯估计的效果,在合理的模型设置下贝叶斯估计在大量重复抽样下具有更好的稳定性。The inference of non-probability samples is a popular topic in recent years.To solve this problem,this paper takes the use of prior information as a starting point,sets a Bayesian form super-population model under quota sampling,which leads to a weighted estimation of sample information and prior information.The case study of medical resources in Beijing shows that the accuracy of prior information and the appropriate allocation of weights are key points to the Bayesian model-based estimation for quota sampling.Under an appropriate model setting,Bayesian model-based approach is more stable when repeated numerous sampling is carried out.

关 键 词:配额抽样 非概率抽样 先验信息 基于贝叶斯模型估计 

分 类 号:C811[社会学—统计学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象