检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:唐天兵[1] 陈永发 蒙祖强[1] 李继发 TANG Tianbing;CHEN Yongfa;MENG Zuqiang;LI Jifa(School of Computer Electronics and Information,Guangxi University,Nanning 530004,China)
机构地区:[1]广西大学计算机与电子信息学院,南宁530004
出 处:《火力与指挥控制》2024年第4期18-23,共6页Fire Control & Command Control
基 金:国家自然科学基金资助项目(62266004)。
摘 要:针对无人战斗机(unmanned combat air vehicle,UCAV)处于存在威胁区域的战场中路径规划问题,提出一种基于分组教与学算法的UCAV自适应路径规划方法。通过分析UCAV路径评价指标,提出一种自适应的UCAV路径评价模型,根据作战环境规划出距离短、威胁小的任务路径。针对教与学算法寻优精度低、耗时长的问题,提出一种分组教与学算法,引入动态分组和高斯分布扰动策略,提高算法寻优性能。通过仿真实验,该方案求解的最优路径更短且安全。Aiming at the path planning problem of Unmanned Combat Air Vehicle(UCAV)in the battlefield where UCAV is located in a threat area,a UCAV adaptive path planning method based on the algorithm of modified teaching-learning-based optimization is proposed.By analyzing the evaluation index of UCAV path,an adaptive UCAV path evaluation model is proposed,and the mission path with short distance and small threat is planned according to the combat environment.Then,aiming at the problems of low precision and long time consuming in the optimization of teaching and learning algorithm,the algorithm of modified teaching-learning-based optimization is proposed,and dynamic grouping and Gaussian distribution perturbation strategy are introduced to improve the optimization performance of the algorithm.The simulation results show that the optimal path is shorter and safer.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49