基于SSAM的行人过街信号优化安全评价分析  

Safety Evaluation Analysis of Pedestrian Crossing Signal Optimization Based on SSAM

在线阅读下载全文

作  者:张义 ZHANG Yi(School of Vehicle and Traffic Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China)

机构地区:[1]太原科技大学车辆与交通工程学院,山西太原030024

出  处:《太原学院学报(自然科学版)》2024年第2期50-55,共6页Journal of TaiYuan University:Natural Science Edition

摘  要:随着交通强国战略的加快推进,交通安全被放在了举足轻重的地位,然而针对道路中大流量的行人过街路口,并没有一套合适的信号配时方案,这使得该类型的行人过街路口交通安全问题频出。基于Webster信号优化算法,提出了一种适用于道路大流量行人过街路口的交通信号设计方案,并以太原科技大学主校区和新校区门前的路口为例,使用VISSIM微观仿真软件和间接安全评价模型(surrogate safety assessment model,SSAM),验证了信号配时方法的可行性,并进行了交通安全评价分析。结果表明:优化后的信号配时使目标道路的平均延误降低了44.60%,交通冲突总数降低了32.53%。提出的优化方案降低了路口中车辆的延误,提升了行人过街的安全性,可以为城市交通管理提供理论参考依据。In an effort to build China into a country with great transport strength,traffic safety has been placed in a pivotal position.However,there is no appropriate signal timing plan for pedestrian crossings with large traffic flow,so road safety problems involving pedestrian crossings frequently occur.Based on the original Webster signal optimization algorithm,this paper proposes a traffic signal design scheme suitable for high-volume pedestrian crossings.Taking the intersection in front of the main campus and the new campus of Taiyuan University of Science and Technology as an example,the VISSIM microsimulation software and the surrogate safety assessment model(SSAM)were used to verify the feasibility of the signal timing method,and the traffic safety evaluation was carried out.The results show that the optimized signal timing reduces the average delay of the target road by 44.60%and the total number of traffic conflicts by 32.53%.The proposed optimization scheme reduces the delay of vehicles at the intersection,improves the safety of pedestrians crossing the street,and can provide theoretical reference for urban traffic management.

关 键 词:信号配时 VISSIM仿真 间接安全评价模型 交通安全 

分 类 号:U491[交通运输工程—交通运输规划与管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象