免疫粒子群算法的测试数据生成  被引量:1

Immune particle swarm optimization algorithm and its application on test data generation

在线阅读下载全文

作  者:焦重阳 周清雷[4] 张文宁[5] JIAO Chong-yang;ZHOU Qing-lei;ZHANG Wen-ning(PLA Strategic Support Force Information Engineering University,Zhengzhou 450001,China;State Key Laboratory of Mathematical Engineering and Advanced Computing,Zhengzhou 450001,China;Henan Information Engineering School,Zhengzhou Vocational College of Industrial Safety,Zhengzhou 450011,China;School of Computer and Artificial Intelligence,Zhengzhou University,Zhengzhou 450001,China;Software College,Zhongyuan University of Technology,Zhengzhou 450007,China)

机构地区:[1]中国人民解放军战略支援部队信息工程大学,河南郑州450001 [2]数学工程与先进计算国家重点实验室,河南郑州450001 [3]郑州工业安全职业学院河南信息工程学校,河南郑州450011 [4]郑州大学计算机与人工智能学院,河南郑州450001 [5]中原工学院软件学院,河南郑州450007

出  处:《计算机工程与设计》2024年第5期1435-1442,共8页Computer Engineering and Design

基  金:国家自然科学基金面上基金项目(61572444)。

摘  要:为有效改善粒子群算法进化后期收敛速度慢,克服易陷入局部极值的缺陷,提出一种自适应免疫粒子群算法并在面向路径的测试数据生成中得到应用。本文提出自适应的惯性权重的调整方法和学习因子的调节策略,加快算法的搜索速率;引入免疫算法中的免疫算子,提出抗体的浓度调节机制,使得粒子群的多样性更加丰富,提升算法的寻优能力;通过免疫选择操作,避免算法的早熟收敛;以分支函数叠加法构造适应度函数。实验结果表明,该算法避免了粒子群算法早熟收敛现象的发生,有效地提高了测试数据自动生成的效率。To overcome the phenomena of falling into local optimal value and premature convergence of the standard particle swarm algorithm in the late stage of evolution,an optimization method of adaptive immune particle swarm optimization algorithm was proposed to generate path-oriented test data automatically.An adaptive adjustment scheme based on inertial weight and an adjustment scheme based on learning factor were proposed to improve the convergence speed of the algorithm.The regulation mechanism of antibody concentration was put forward to improve the diversity of the population and increase the search ability.Through the immune selection,the premature convergence of the algorithm was effectively avoided.The fitness function was constructed by the summation of branch functions to better evaluate the quality of the generated test data.Experimental results show that the proposed method can avoid premature convergence of particle swarm optimization algorithm and effectively improve the efficiency of generating test data automatically.

关 键 词:粒子群算法 测试数据生成 惯性权重 学习因子 免疫算子 种群多样性 免疫选择 

分 类 号:TP311[自动化与计算机技术—计算机软件与理论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象