面向目标6D姿态追踪的复用预测网络  

Reusable predictive network for target-oriented 6D attitude tracking

在线阅读下载全文

作  者:呼木吉力吐 HU Mujilitu(Science and Technology Research Institute,National Energy Zhunneng Limited Liability Company,Inner Mongolia,Ordos 010300,China)

机构地区:[1]国能准能集团有限责任公司科学技术研究院,内蒙古鄂尔多斯010300

出  处:《辽宁工程技术大学学报(自然科学版)》2024年第2期217-224,共8页Journal of Liaoning Technical University (Natural Science)

基  金:辽宁省教育厅基本科研项目(LJKMZ20220677)。

摘  要:为提高目标6D姿态追踪网络的收敛能力和追踪精度,提出一种基于少量数据驱动的目标6D姿态追踪复用预测网络。以当前时刻的彩色及深度(red green blue and depth,RGB-D)图像和上一时刻的目标渲染值作为输入,通过2个独立的特征编码器提取特征矩阵,在特征编码器中引入通道注意力机制模块,保证有选择性地调整通道信息的权重;构建复用预测网络模块,将特征矩阵解耦得到旋转矩阵,通过旋转矩阵前向传播与特征矩阵融合,将融合的结果再次解耦得到物体6D姿态的旋转矩阵与平移矩阵,并采用李代数方法通过2个矩阵计算出目标的6D姿态。实验结果表明:在使用少量数据训练网络模型的情况下,与MaskFusion、“TEASER++”和se(3)-Tracknet等方法相比,所提方法能够提高目标6D姿态追踪的准确率。To improve the convergence ability and tracking accuracy of the target 6D attitude tracking network,a target 6D attitude tracking multiplexing prediction network driven by a small amount of data is proposed.Using the RGB-D image at the current time and the target rendering value from the previous time as inputs,feature matrices are extracted through two independent feature encoders.A channel attention mechanism module is introduced in the feature encoder to selectively adjust the weights of channel information.A reusable prediction network module is constructed to decouple the feature matrix into a rotation matrix,then propagate the rotation matrix and fuses it with the feature matrix through forward propagation.The fusion result is decoupled again to get the rotation matrix and the translation matrix of the object's 6D attitude,and the Lie algebra method is used to calculate the target's 6D attitude through the two matrices.Experimental results show that when training network models with a small amount of data,our method can improve the accuracy of target 6D pose tracking compared with methods such as MaskFusion,TEASER++,and se(3)-Tracknet.

关 键 词:6D姿态追踪 深度学习 神经网络 数据驱动 注意力机制 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象