基于K2算法的发动机冷试贝叶斯网络模型研发  被引量:1

Development of Bayesian network model for engine cold test based on K2 algorithm

在线阅读下载全文

作  者:吴凡 王辉 杨晓峰 徐卓 闫伟[1] WU Fan;WANG Hui;YANG Xiaofeng;XU Zhuo;YAN Wei(School of Energy and Power Engineering,Shandong University,Jinan 250100,Shangdong,China;Weichai Power Co.,Ltd.,Weifang 261001,Shangdong,China)

机构地区:[1]山东大学能源与动力工程学院,山东济南250100 [2]潍柴动力股份有限公司,山东潍坊261001

出  处:《农业装备与车辆工程》2024年第5期120-123,共4页Agricultural Equipment & Vehicle Engineering

基  金:山东省重点研发计划(重大科技创新工程)项目(2020CXGC011004);山东省重点研发计划(重大科技创新工程)项目(2020CXGC011005)。

摘  要:发动机冷试测试较传统热试方法可减少燃油消耗及排放,为提高冷试测试故障诊断精度,提出使用K2算法构建贝叶斯网络故障诊断模型。选取多台柴油机的相关冷试测试数据,分别构建基于专家知识和基于K2算法的贝叶斯网络故障诊断模型进行比较,结果表明,使用K2算法构建贝叶斯网络优于通过专家知识构建的贝叶斯网络,所提方案可以优化目前的故障诊断模型。Engine cold test can reduce fuel consumption and emissions compared to traditional hot test methods.In order to improve the accuracy of fault diagnosis in cold test,a Bayesian network fault diagnosis model using K2 algorithm was proposed.Firstly,relevant cold test data from multiple diesel engines were selected to construct Bayesian network fault diagnosis models based on expert knowledge and K2 algorithm for comparison.The results showed that using K2 algorithm to construct Bayesian network was better than using expert knowledge to construct Bayesian network,and the proposed solution could optimize the current fault diagnosis model.

关 键 词:故障诊断 贝叶斯网络 K2算法 冷试测试 发动机 

分 类 号:U464[机械工程—车辆工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象