基于改进麻雀搜索算法的分数阶PID参数整定  被引量:6

Fractional order PID parameter tuning based on improved sparrow search algorithm

在线阅读下载全文

作  者:陈炫儒 吴立飞 杨晓忠[1] CHEN Xuan-ru;WU Li-fei;YANG Xiao-zhong(School of Mathematics and Physics,North China Electric Power University,Beijing 102206,China;School of Control and Computer Engineering,North China Electric Power University,Beijing 102206,China)

机构地区:[1]华北电力大学数理学院,北京102206 [2]华北电力大学控制与计算机工程学院,北京102206

出  处:《控制与决策》2024年第4期1177-1184,共8页Control and Decision

基  金:国家自然科学基金项目(11371135);中央高校基本科研业务费专项资金项目(2021MS045)。

摘  要:针对分数阶PID控制器的设计问题,提出一种改进麻雀搜索算法(ISSA)对分数阶PID控制器进行参数整定.在麻雀搜索算法(SSA)中引入Chebyshev混沌映射,提高SSA的种群多样性和全局搜索能力;采用自适应t分布和萤火虫算法,设置转换概率p使二者交替执行,提高SSA的收敛精度和寻优性能.对10个基准测试函数进行寻优,结果表明相较于已有的4种经典算法,ISSA在收敛速度、收敛精度、全局搜索能力等方面均有较大提升.最后,对两类被控系统进行仿真分析,相比现有成果,证实了ISSA算法对求解分数阶PID控制器参数整定问题的有效性和实用性.Aiming at the design problem of a fractional order PID controller,an improved sparrow search algorithm(ISSA)is proposed to adjust the parameters of the fractional order PID controller.The Chebyshev chaotic map is introduced into sparrow search algorithm(SSA)to improve the population diversity and global search ability of the SSA.The adaptive t-distribution and firefly algorithm are adopted,and the conversion probability p is set to make them execute alternately,so as to improve the convergence accuracy and optimization performance of the SSA.The 10 benchmark functions,and the results show that compared with the existing four classical algorithms,the ISSA has a great improvement in convergence speed,convergence accuracy and global search ability.Finally,two kinds of controlled systems are simulated and analyzed.Compared with the existing results,the effectiveness and practicability of the proposed ISSA algorithm for solving the fractional order PID controller parameter tuning problem are verified.

关 键 词:分数阶PID控制器 改进麻雀搜索算法 自适应t分布 萤火虫算法 基准函数寻优 参数整定 

分 类 号:TP18[自动化与计算机技术—控制理论与控制工程] TP273[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象