检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李洪兵 唐成浩 韩咪 李超[1] 刘可 刘琴 LI Hongbing;TANG Chenghao;HAN Mi;LI Chao;LIU Ke;LIU Qin(School of Engineering,Sichuan Normal University,Chengdu Sichuan 610101,China;School of Economics and Management,Southwest Petroleum University,Chengdu Sichuan 610500,China;Sichuan Taida Construction Engineering Company Limited,Chengdu Sichuan 610041,China)
机构地区:[1]四川师范大学工学院,四川成都610101 [2]西南石油大学经济管理学院,四川成都610500 [3]四川省泰达建设工程有限公司,四川成都610041,China
出 处:《安全》2024年第4期82-88,共7页Safety & Security
基 金:国家民委“一带一路”国别和区域研究中心“日本应急管理研究中心”项目(2023RBYJGL-4);四川省哲学社会科学重点实验室“智慧应急管理重点实验室”项目(2023ZHYJGL-6);四川应急管理知识普及基地项目(SCYJ2023-07);四川省科技计划资助(2023NSFSC1038);四川师范大学实验技术项目(SYJS2022008);2023年四川省大学生创新创业训练项目(S202310636103)。
摘 要:为快速准确地预测地震伤亡人数,提高地震应急救援效率,基于皮尔逊相关系数法定量刻画地震伤亡人数与影响因素之间的关联程度,挖掘地震伤亡人数的有效影响因素,并通过多元回归分析法检验有效影响因素的可靠性;采用麻雀搜索算法(SSA)优化BP神经网络,构建SSA-BP神经网络模型对地震伤亡人数进行预测,并将该模型与SVM、RBF、BP模型的预测数据和实际值进行对比。结果表明:与地震伤亡人数相关程度从高到低的有效影响因素依次为震中烈度、震级、房屋受损情况、发震时间、震源深度;SSA-BP神经网络模型较SVM、RBF、BP预测模型的均方误差分别降低93.3%、91.4%、85.2%,平均绝对误差分别降低69.3%、64.9%、54.7%,均方根误差分别降低74.1%、70.8%、61.6%,预测结果与实际地震伤亡人数接近,该模型可用于地震伤亡人数预测。In order to quickly and accurately predict the number of earthquake casualties,improve the efficiency of earthquake emergency rescue,the correlation degree between the number of earthquake casualties and the influencing factors was quantitatively described based on Pearson correlation coefficient method,and the effective influencing factors of the number of earthquake casualties were explored,and the reliability of the effective influencing factors was tested by multiple regression analysis.The sparrow search algorithm(SSA)is used to optimize the BP neural network,and the SSA-BP neural network model is constructed to predict the number of casualties in the earthquake.Compare the predicted data and actual values of SSA-BP neural network model with SVM,RBF,BP models.The results show that the effective influencing factors related to the number of earthquake casualties from high to low are as follows:epicentral intensity,magnitude,building damage,earthquake occurrence time and focal depth.Compared with SVM,RBF and BP prediction models,the mean square error of SSA-BP neural network model is reduced by 93.3%,91.4%and 85.2%respectively,the average absolute error is reduced by 69.3%,64.9%and 54.7%respectively,and the root mean square error is reduced by 74.1%,70.8%and 61.6%respectively.The forecast results are close to the actual earthquake casualties,and the model can be used to predict the earthquake casualties.
关 键 词:地震灾害 伤亡人数 麻雀搜索算法(SSA) BP神经网络 预测
分 类 号:X924[环境科学与工程—安全科学] TP274[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.219.195.35