检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:谭昆 黄茜子 TAN Kun;HUANG Xizi(Yangtze River Channel Planning and Design Institute,Wuhan 430040,China)
机构地区:[1]长江航道规划设计研究院,湖北武汉430040
出 处:《水运工程》2024年第5期151-155,共5页Port & Waterway Engineering
摘 要:水位高低与航道通航能力息息相关,对大型船舶(队)通过某些典型航段时尤为重要。水位受到多种因素的影响,开发准确、可靠的水位预测模型是一项具有挑战性的问题。提出一种基于Transformer的多特征时空融合网络的水位预测模型,该模型能够捕捉水位数据的复杂时空模式和相互作用,研究水位与不同影响因素的关联关系,根据融合后的特征生成未来水位预测结果。研究成果有助于保障船舶航行安全,充分发挥航道通航能力,为航运管理和规划提供参考。Water level is closely related to the navigability of a waterway,and is particularly important for large ships(convoys)passing through certain typical sections.Water level is affected by many factors,and developing an accurate and reliable water level prediction model is a challenging problem.In this paper,a water level prediction model based on Transformer's multi-feature spatio-temporal fusion network is proposed,which is able to capture the complex spatio-temporal patterns and interactions of the water level data,study the correlation relationship between the water level and the different influencing factors,and generate the future water level prediction results based on the fused features.The research results are helpful to ensure the navigation safety of ships,give full play to the navigation capacity of waterways,and provide references for shipping management and planning.
分 类 号:U612[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117