检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张小禹 邓健志[1] 罗俊[2] 徐嘉庆 ZHANG Xiaoyu;DENG Jianzhi;LUO Jun;XU Jiaqing(School of Physics and Electronic Information Engineering,Guilin University of Technology,Guilin 541004,China;Department of Pharmacy,First Affiliated Hospital of Guangxi Medical University,Nanning 530021,China)
机构地区:[1]桂林理工大学物理与电子信息工程学院,桂林541004 [2]广西医科大学第一附属医院药学部,南宁530021
出 处:《中国现代应用药学》2024年第7期983-989,共7页Chinese Journal of Modern Applied Pharmacy
摘 要:目的在药品调剂过程中,利用计算机视觉技术识别药品容易受到光照、角度以及包装等因素的影响,会产生较大的识别误差。因此,本文提出了一种用于药品外观识别的目标检测算法(YOLOv4-GhostNet-CMB)。方法首先,该算法使用GhostNet结构重新设计YOLOv4的骨干特征提取网络;其次,在Ghost模块中融合CA注意力机制,沿着水平和垂直方向聚合特征,增强模型对药品的精确定位能力;最后,通过引入Bi-FPN特征金字塔结构与新主干相连,并新增了一个特征图输出,加强特征的提取,增强药品的识别率。结果YOLOv4-GhostNet-CMB算法平均准确率可达到92.31%,与YOLOv4算法相比提升了4.49%。结论本方法能够有效识别药品,且模型大小仅有150 M。OBJECTIVE In the process of drug dispensing,using computer vision technology to identify drugs is vulnerable to the influence of lighting,angle,packaging and other factors,which will produce large identification errors.Therefore,this paper proposes an object detection algorithm for drug appearance recognition(YOLOv4-GhostNet-CMB).METHODS Firstly,the algorithm redesigned the backbone feature extraction network in YOLOv4 by using GhostNet.Secondly,the CA attention model was brought into the Ghost module,aggregate features along horizontal and vertical directions to enhance the precise positioning of drugs.Finally,Bi-FPN feature pyramid structure was introduced to connect with the new backbone,and added a feature graph output which could enhance feature extraction and improved the detection accuracy of drugs.RESULTS The experimental results show that the average detection accuracy of YOLOv4-GhostNet-CMB algorithm reached 92.24%,which was a significant improvement of 4.49%compared with YOLOv4 algorithm in term of detection accuracy.CONCLUSION The model size is only 150 MB,nd this algorithm can effectively identify drugs.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117