检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:付宁宁 苏屹[1] 郭秀芳 Fu Ningning;Su Yi;Guo Xiufang(School of Economics and Management,Harbin Engineering University;Department of Management,Harbin Finance University;Humanities Teaching Department,The Open University of Harbin,Harbin 150001,China)
机构地区:[1]哈尔滨工程大学经济管理学院 [2]哈尔滨金融学院管理系 [3]哈尔滨开放大学人文教学部,黑龙江哈尔滨150001
出 处:《科技进步与对策》2024年第10期67-77,共11页Science & Technology Progress and Policy
基 金:国家自然科学基金项目(72074059,72001055);黑龙江省省属本科高校基本科研业务费科研项目(2022-KYYWF-015);工业和信息化部党建课题重大项目(GXZY2212)。
摘 要:智能制造企业创新效率关乎我国未来制造业的全球地位,对于加快发展现代产业体系,巩固壮大实体经济根基具有重要作用。利用超效率DEA模型和Tobit回归方程,测算智能制造企业两阶段创新效率及其影响因素,结果表明,我国智能制造企业创新效率呈逐年上升趋势,但涨幅较小,还存在很大提升空间;高研发高转化和低研发低转化类智能制造企业数量最多,电气机械和器材制造业、汽车制造业创新效率优势明显,个体和行业差异均较大;科技水平、资产规模、创新基础环境、股权集中度对两阶段创新效率均具有正向影响;政府支持、人才结构、市场结构对技术研发效率具有正向影响,但对经济转化效率存在负向影响。最后,从制定合理有效的政府支持政策、完善科技投入管理制度、规范市场竞争机制、合理调整创新人才结构4个方面提出提高我国智能制造企业创新效率的政策建议。Along with the deep integration of digital economy and traditional manufacturing characterized by digitization,networking and intelligence,intelligent manufacturing has become the focus of economic and technological competition among countries around the world.Chinese intelligent manufacturing is confronted by problems such as weak industrial infrastructure,an insufficient supply of data elements,and the relatively lagging application of intelligent technology.Innovation is the primary driving force of the development of intelligent manufacturing,while intelligent manufacturing is rooted in enterprise innovation.Since enterprises are the main driving force of intelligent manufacturing,and"Internet plus"and industrial Internet are important driving forces in the field of manufacturing,this paper aims to explore the allocation structure of innovation resources in intelligent manufacturing enterprises,make scientific measurement of the innovation efficiency of intelligent manufacturing enterprises,and provide references for how to improve the innovation capability of intelligent manufacturing enterprises.This study selects the enterprises from China's intelligent manufacturing demonstration pilot project as a sample,and constructs a two-stage super efficiency DEA model to measure technology development efficiency,economic transformation efficiency,and overall innovation efficiency.The intelligent manufacturing enterprises are divided into four categories:high R&D and high transformation,high R&D and low transformation,low R&D and high transformation,and low R&D and low transformation.Then the factors and degrees that affect the two-stage innovation efficiency of intelligent manufacturing enterprises are analyzed by the Tobit regression model.The results indicate that,first,the innovation efficiency of intelligent manufacturing enterprises has been increasing year by year,but there is still a lot of room for improvement.There are also significant individual differences,and the proportion of intelligent manufacturing
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.157