基于GA-PSO混合优化SVM的机载EHA故障诊断  被引量:2

Fault Diagnosis of Airborne EHA Based on GA-PSO Hybrid Optimization SVM

在线阅读下载全文

作  者:覃刚 葛益波[2,3] 姚叶明 周清和 QIN Gang;GE Yi-bo;YAO Ye-ming;ZHOU Qing-he(School of Aeronautical Science and Engineering,Graduate School of Chinese Aeronautical Establishment,Yangzhou,Jiangsu 225111;AVIC Jincheng Nanjing Engineering Institute of Aircraft System,Nanjing,Jiangsu 211106;Aviation Key Laboratory of Science and Technology on Aero Electromechanical System Integration,Nanjing,Jiangsu 211106)

机构地区:[1]中国航空研究院研究生院航空科学与工程学院,江苏扬州225111 [2]中航工业金城南京机电液压工程研究中心,江苏南京211106 [3]航空机电系统综合航空科技重大实验室,江苏南京211106

出  处:《液压与气动》2024年第5期168-180,共13页Chinese Hydraulics & Pneumatics

摘  要:针对机载电静液作动器(Electro-Hydrostatic Actuator,EHA)的典型故障,详细分析了故障原理并在MATLAB/Simulink中搭建了仿真模型。为了高效准确识别故障类型,提出一种用遗传算法(Genetic Algorithm,GA)和粒子群算法(Particle Swarm Optimization,PSO)混合优化支持向量机(Support Vector Machine,SVM)的故障诊断算法。GA鲁棒性好且全局搜索能力强但收敛速度慢,PSO对样本规模不敏感且具有记忆功能但易陷入局部最优,故融合两种算法寻找SVM的最优参数。另外,为了解决传统SVM多分类方法“一对多”和“一对一”易出现不可分的问题,建立一种偏二叉树结构的SVM多分类模型。对于采集的原始数据高度重合的情况,引入时域特征统计量进一步提升模型的分类性能。实验结果表明,提出的混合优化算法寻优速度更快、所寻参数更佳,同时用该算法优化的SVM分类模型相比于其他5类常用的机器学习模型分类效果更好,故障识别正确率可达97.7%。Aiming at the typical faults of airborne electro-hydrostatic actuator(EHA),the fault principle was analyzed and the simulation model was established in MATLAB/Simulink.To identify fault types efficiently,a fault diagnosis algorithm based on genetic algorithm(GA)and particle swarm optimization(PSO)hybrid optimization support vector machine(SVM)was proposed.GA has good robustness and global search ability,but its convergence speed is slow.PSO is insensitive to sample size and has memory function,but it’s easy to fall into local optimization.Thus,the two algorithms were combined to find the optimal parameters of SVM.In addition,the traditional multi-classification methods of SVM‘one to many’and‘one to one’are easy to be inseparable,to solve the problem,a method with partial binary tree structure was proposed.For solving the collected original data were highly coincident,time domain feature statistics were introduced to improve the classification performance.The experimental results show the proposed GA-PSO has faster optimization speed and better parameters.At the same time,the classification effect of SVM optimized by this algorithm is better than other five commonly used machine learning models,and the accuracy of fault identification is 97.7%.

关 键 词:机载EHA 遗传算法 粒子群算法 偏二叉树结构 多分类SVM 

分 类 号:TH137[机械工程—机械制造及自动化] V245.1[航空宇航科学与技术—飞行器设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象