检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙大成 Sun Dacheng(Sinosteel Equipment&Engineering Co.,Ltd.,Beijing 100080,China)
机构地区:[1]中钢设备有限公司,北京100080
出 处:《山西冶金》2024年第3期132-134,共3页Shanxi Metallurgy
摘 要:为提高转炉炼钢的生产效率和经济效益,提出以改进神经网络学习极限机的预测模型为基础,引入改进的粒子群算法作为终点碳温控制优化模型。经过研究表明,转炉炼钢温度偏差在15℃左右的样本有89个,命中率为62.676%。碳含量w(C)偏差在0.015左右的样本有105个,命中率为72.112%。由此可见,预测模型及控制模型对转炉炼钢终点碳温控制的有效性以及降低能源消耗均具有重要意义。In order to improve the production efficiency and economic benefits of converter steelmaking,an improved neural network learning extreme machine prediction model is proposed,and an improved particle swarm optimization algorithm is introduced as the optimization model for endpoint carbon temperature control.After research,it has been shown that there are 89 samples with a converter steelmaking temperature deviation of around 15℃,and the hit rate is 62.676%.There are 105 samples with a carbon content deviation w(C)of around 0.015,with a hit rate of 72.112%.It can be seen that the effectiveness of prediction and control models in controlling the endpoint carbon temperature of converter steelmaking and reducing energy consumption are of great significance.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49